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Multirhythmicity generated by slow variable diffusion in a ring of relaxation oscillators
and noise-induced abnormal interspike variability

E. I. Volkov and D. V. Volkov
Department of Theoretical Physics, Lebedev Physical Institute, Leninskii 53, Moscow, Russia

~Received 9 April 2001; revised manuscript received 22 January 2002; published 10 April 2002!

The deterministic and noise-dependent dynamics of a ring of three Ohmically coupled electronic relaxation
oscillators are considered by means of numerical simulations. Each isolated oscillator is described by a set of
two ordinary differential equations with very different characteristic times. The emergence of the limit cycle
via the Hopf bifurcation results from the N-shaped current-versus-voltage characteristic of the nonlinear resis-
tor. The phase diagram is calculated for a ring of three such oscillators in the presence of small detuning.
Special attention is focused on two parameter areas, one near a transition to the homogeneous and the other
near the inhomogeneous stable steady state. Along with other nontrivial limit cycles, essentially asymmetrical
limit cycles termed dynamic traps may arise in these two areas. A dynamic trap is a regime in which one or two
oscillators do not perform full-amplitude oscillations and, correspondingly, do not generate spikes. The inter-
spike interval~ISI! distribution in the presence of noise is calculated as a function of the coupling strength in
both areas of the parameter plane. The distributions are extremely polymodal near the homogeneous steady
state even if the in-phase limit cycle is dominating. The origins of this abnormal enhancement of ISI variability
are discussed in detail. A similar analysis shows that nontrivial periodic attractors are observable in the vicinity
of the inhomogeneous stable steady states only if the level of noise is relatively low. In this case, the domi-
nance of the in-phase limit cycle basin results in an almost unimodal distribution of interspike intervals.

DOI: 10.1103/PhysRevE.65.046232 PACS number~s!: 05.45.2a, 05.40.2a
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I. INTRODUCTION

Ensembles of coupled oscillators have been used fo
long time as models of biological processes. For example
@1#, a population consisting of a large number of almost id
tical oscillators, each of which is weakly coupled to all t
others, is considered to be a model for the source of circa
rhythms~see also@2,3#!. Long chains of almost linear oscil
lators are used to imitate the contraction waves of the sm
intestine@4#. Small ensembles of four, six, or eight cells ha
become popular in explaining the gaits of legged anim
@5–7#.

The dynamics of locally coupled ‘‘theoretical’’ oscillator
@8–10#, neurons@11# ~see @12# for recent examples!, and
electronic@13,14#, and chemical@15–20# oscillators is also
being studied extensively in order to reveal as many col
tive modes as possible in systems consisting of identica
nearly identical elements. Comprehensive analysis of the
namics of ensembles of relaxation oscillators has reve
that several out-of-phase modes may be stable in a b
parameter range if the stiffness of individual oscillators
high and slow ~recovery! variable exchange dominate
@21,22#.

Although the dynamics of systems composed of rel
ation oscillators is difficult to analyze analytically or nume
cally, relaxation oscillators, in our opinion, describe the re
ity more adequately, because the trajectories of m
biological and chemical oscillators are far from being h
monic@23#. In addition, it is known from early work@24# and
from recent investigations of oscillators coupled via ‘‘fa
threshold modulation’’@25# that arrays of relaxation oscilla
tors are more suitable candidates for control systems
nonrelaxation ones because the time required for the latte
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become synchronized is much longer.
A system was recently studied@26# that consisted of three

almost identical electronic oscillators coupled via resisto
This type of coupling implies linear diffusion of only slow
variables~voltage in this specific case!, which enhances the
phase differences between the phase points located on
different branches of the N-shaped nullcline of the fast va
able. However, this exchange does not affect the stability
the homogeneous state~in-phase oscillations! in ensembles
of two-dimensional identical oscillators. The largest volum
of the parameter space in systems of three identical osc
tors with cyclic boundary conditions is occupied by so-call
rotating waves~RWs! of various types. Rotating waves ar
periodic solutions with the same wave formXi(t) for each
oscillator, and the phase shifts by one-third of the per
between adjacent oscillators in a chain. A simple rotat
wave contains one spike of the fast variable per period. Ho
ever, if stiff oscillators are strongly coupled, more intrica
RWs are also stable in certain parts of the parameter sp
The second generic solution is an antiphase attractor, w
is characterized by the in-phase oscillation of two eleme
phase-shifted by half a period relative to the third one. T
existence of these attractors does not depend on the choi
the model for the nonlinear oscillator@10#. They have been
demonstrated in experiments with chemical@19# and elec-
tronic @14# systems.

As shown both numerically and experimentally@26#, a
subtle increase in the period of one of the oscillators is
sponsible for the emergence of a large region in the par
eter space where a ring of coupled oscillators loses amplit
symmetry. Specifically, full-amplitude oscillations becom
inhibited in the retarded oscillator. Asymmetrical period
attractors in which slow variable exchange causes at l
one oscillator to stop generating spikes rhythmically will
©2002 The American Physical Society32-1



s-
a
s
n
e
o

in
m
in

ar
en
w
f

he
id
illa
th
ik

e
th
p
o
a

th

m
e

xis
th

in
n
n
is
et
s
rib
n
nd
s

II
th
ic
fo
e
ic

eo
d
ea
‘m
u-
fly

nic

ion

d
the
re-

nic
de-

e
As
ers

re-
us

er

e
the

i-
an

ally
ear-
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referred to below as ‘‘dynamic traps’’~DTs!. Two models,
one describing two identical neurons@27# and the other
three-membrane timers@28#, have also been shown to po
sess stable highly asymmetrical solutions. However, the
eas of their existence shrink rapidly with increasing stiffne
of the elements. For our set of parameters of the electro
oscillator, such attractors are unobservable in the absenc
detuning. We demonstrate here that a minor modification
the experimental setup used in@26# and subtle detuning in
the periods of oscillations of individual units may result
the emergence of DTs in the vicinity of bifurcations fro
oscillations not only to the homogeneous but also to the
homogeneous steady states.

With such a diverse set of stable attractors, it is of p
ticular importance to examine the role of noise in the g
eration of collective behaviors. Therefore, in this study,
continue to numerically analyze the dynamic properties o
ring of three slightly detuned electronic oscillators in t
presence of noncorrelated noise. Specifically, we cons
the case when the internal parameters of individual osc
tors determine the extent of detuning without affecting
coupling strength. In the presence of noise, the intersp
interval ~ISI! distributions for full-amplitude oscillations ar
convenient characteristics of the dynamic behavior of
system. It is usually expected that the relative peak am
tudes in the ISI histograms will reflect the sizes of basins
coexisting stable attractors and that the peaks’ positions
determined by the periods of the limit cycles and/or by
characteristic times of transitions between the attractors.

Detailed analysis of wave forms reveals the mechanis
giving rise to the peaks in the ISI distributions in the rang
of existence of periodic attractors and in the range of e
tence of a unique in-phase regime near the transition to
homogeneous steady state. We demonstrate how noise
action with intense slow variable exchange generates ab
mally long ISIs even for identical oscillators, which ca
move only in phase or in antiphase in the absence of no
The relationships are discussed between long ISIs and d
ministic detuning-dependent attractors, including DTs. A
counterexample to this unusual spiking regime, we desc
the expected noise-induced spiking behavior near the tra
tion to inhomogeneous steady states, where both a DT a
RW exist, but the ISI distributions remain unimodal becau
of the strong dominance of the in-phase limit cycle.

The paper is organized as follows. Sections II and
present a brief description of the isolated oscillator and
numerical methods, respectively. The deterministic dynam
is examined in Sec. IV by constructing the phase diagram
three identical oscillators; their detuning is described in S
IV A. Thereafter, we consider the evolution of the bas
modes in the presence of small detuning~Sec. IV B! and
demonstrate the existence of a DT near the homogen
steady state~Sec. IV C!. The detuning-dependent DTs an
the phase diagram near the stable inhomogeneous st
states are investigated in Sec. V. Section VI presents a ‘
croscopic’’ analysis of the main peaks in the ISI distrib
tions. The preliminary results of this work have been brie
reported elsewhere@29#.
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II. ELECTRONIC OSCILLATOR

We chose to study numerically a ring of three electro
oscillators coupled through Ohmic resistors~Fig. 1!. Simula-
tions were performed for the same nullcline and relaxat
parameters that were used in@26#. As seen in the figure, an
individual electronic oscillator is anLC circuit containing a
nonlinear resistorRnl , which accounts for the N-shape
current-versus-voltage characteristic and, hence, for
N-shaped nullcline in the set of differential equations cor
sponding to this scheme~Fig. 1!:

L
dIi

dt
5Ui2S~ I i !, ~1!

C
dUi

dt
5

UV1Ui

RVi
2I i1

Ui 2122Ui1Ui 11

Rc
, ~2!

wherei 51,2,3 (mod 3).
In its turn, a nonlinear resistor is a separate electro

device. Its current-versus-voltage characteristic has been
termined experimentally in a previous study~see @26# for
details!. The individual oscillator’s phase portrait and th
time series of the dynamic variables are shown in Fig. 2.
clearly seen in this figure, the oscillators with the paramet
chosen are stiff.

The oscillators are made nonidentical by setting their
sistancesRV ~rather than capacitances, as in the previo
study @26#! to slightly different values. We chose the latt
based on the dependence of the period onRV for different
UV values~see Sec. IV A!. Note that, with this approach, w
have the period of the isolated oscillator independent of
parameters that control the coupling strength.

III. METHODS

Equations~1! and ~2! were solved using general numer
cal methods. For not very stiff equations, we implemented
explicit fourth-order~double-precision! Runge-Kutta routine

FIG. 1. Scheme of the experimental setup used to numeric
analyze its dynamic behavior. The setup consists of three nonlin
ity (Rnl) -containing oscillators connected in parallel. ResistorsRV

are different; all other parameters are homogeneous:C5215 mF
andL533 mH. The supply voltageUV and the coupling resistors
Rc are the control parameters; the variablesUi in the model equa-
tions are the voltage drops at capacitors.
2-2



re
t
ng

io
in
b

at

x
er

te
tin
e
re
pe
-
th

w
S

e
r

in
the
of

n

of

pa-
rs

.

nd

y

for
ted
mit
d by
1 is
tates
n
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with step size control~subroutine namedDRKGS from theSSP

library!. If the stiffness was large, implicit integrators we
used of whichRADAU5 proved most efficient. To be confiden
that the results obtained are not numerical artifacts or lo
lived transients, we tested whether they varied depending
the method used and/or on the accuracy set in computat
The algorithms were constructed for seeking and identify
the attractors by randomly varying the initial points and o
serving the dynamics of changes in the ISIs of each oscill
during the settling of the system on the attractor~see@22# for
more details!.

IV. DETERMINISTIC DYNAMICS

A. The system of identical oscillators and the method
for its detuning

Even for identical oscillators, quite complex solutions e
ist in the model~1!, ~2! in various areas of the paramet
plane ~Fig. 3 here or Fig. 4 in@26#!. In addition to the in-
phase solution~which is stable everywhere in the parame
plane!, Fig. 3 depicts the areas occupied by stable rota
waves of various types. Along with a simple RW whose p
riod contains only one interspike interval, we observed
gimes in which two, five, and seven interspike intervals
one period were present~RW2, RW5, and RW7, respec
tively!. A large area of the parameter plane is occupied by
stable antiphase attractor marked 1/2 in Fig. 3.

Along with periodic attractors, the phase diagram sho
the boundaries of stable inhomogeneous steady states

FIG. 2. ~a! Phase portrait of the isolated electronic oscillator a
~b! time series of its dynamic variables~slow U and fastI ) for
UV520 V. The limit cycle and main nullclines are indicated b
solid and dashed lines, respectively.
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and SS II~‘‘amplitude death’’ in other terminology; see th
caption to Fig. 3!. As in @26#, the solutions observed fo
identical oscillators will be referred to as ‘‘basic’’ modes.

Inequality of limit cycles may be generated by changes
one or more control parameters. The differences between
periods of uncoupled oscillators may serve as an index
detuning. As mentioned above, variation in theRVi

values,

which determine the slope of one of the main isoclinesUi
5RVi

I i2UV , will be used to study the role of detuning i
the generation of collective modes.

The period of a free oscillator is a nonlinear function
the control parametersRV and UV ~see Fig. 4!. Even if the
oscillators are only slightly different with respect toRV ,
their periods may vary considerably, depending on the
rameterUV . We confine ourselves to examining oscillato
that differ in the free period by no more than 1% to 3%

FIG. 3. Part of the phase diagram of basic periodic attractors
identical oscillators. Different types of rotating wave are designa
as RW1, RW2, RW5, and RW7; 1/2 indicates the antiphase li
cycle. The attractors are stable inside the closed regions depicte
the appropriate lines. Note that there are two regions where RW
stable. The boundaries of the stable inhomogeneous steady s
~‘‘amplitude deaths’’! SS I and SS II are indicated by solid lines. I
region I, the steady statesU1,2 are large andI 1,2 small, whileU3 is
small andI 3 large. In region II, one oscillator has largeU, while
two others have smallUi .

FIG. 4. Dependences of free periods on parameterRV for dif-
ferentUV .
2-3
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E. I. VOLKOV AND D. V. VOLKOV PHYSICAL REVIEW E 65 046232
This detuning index is so small that, withRVi
fixed, it is not

feasible to keep it at this level throughout theUV range
where the limit cycle is stable. Therefore, we will search
dynamic traps in two separate areas of the phase diagram
are most promising in this respect. One of these two area
located near the boundary of the homogeneous steady s
UV515.2 V–16.5 V. Formally, this steady state is not h
mogeneous and not unique if theRVi

are different. But we

prefer to use the term ‘‘homogeneous solution,’’ bearing
mind that the slightly split solutions form a compact grou
The second area (UV518 V–22 V, 1/RC50.2 kV21–
0.6 kV21) borders on two inhomogeneous stable stea
states SS1 and SS2.

To produce additional DT modes, it is usually sufficient
make only one oscillator slightly different from its partner
Therefore, computations in the area near the boundary o
homogeneous steady state were performed forRV1

53.92 kV andRV2,3
53.9 kV; and in the area near SS1 an

SS2 forRV1
54.15 kV andRV2,3

53.9 kV.

In the area near the boundary of the homogeneous st
state, solutions were found that existed only if two of t
three oscillators were identical; therefore we examined
case when all threeRV values were different:RV1

53.92 kV, RV2
53.9 kV, andRV3

53.89 kV.

B. Evolution of basic modes in the presence of small detuning

All the basic modes are quite stable against relatively l
noise and small detuning. However, the presence of detu
makes it necessary to refine the classification of those b
attractors in which there is no phase shift between two of
three oscillators. These solutions include the antiphase at
tor 1/2 ~one oscillator moves in antiphase with two othe!
and the inhomogeneous steady states. Let us conside
example, the 1/2 limit cycle in which oscillators with indice
1 and 2 move in phase with each other and in antiphase
the third oscillator@Fig. 5~a!#. Specifically, we shall retard
the first oscillator by varyingRV1

. When it begins to lag
behind the second oscillator, the solution still resembles
antiphase solution. In fact, the lag between these oscilla
is small, and their wave forms still remain identical@see Fig.
5~b!#. If the third oscillator is retarded, the other two co
tinue to move in phase with each other, Fig. 5~c!. Thus, small
detuning splits the antiphase attractor into two other mod
which have different boundaries of stability in the phase d
gram. In Fig. 6, these solutions are designated as 1/2
~identical oscillators move in antiphase! and 1/2 in~in-phase
oscillations of identical elements!. Similar refinements can
be made for the boundaries of steady state stability. H
ever, in this case, the shifts in the phase point coordinate
the six-dimensional phase space are used, rather than
phase shifts between the oscillators, because they do no
cillate.

Along with splitting the boundaries of steady states a
antiphase attractor stability, an expected result of detunin
the emergence of~i! quasiperiodical regimes and/or~ii ! mul-
tiple synchronization, that is, long-periodi / j /k-type regimes,
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with i / j /k@1 being the numbers of oscillations performe
by each oscillator in one full period. In both cases, the
distributions are narrow because of the smallness of de
ing; therefore, we do not examine them. The wave forms
the in-phase~more precisely, almost in-phase! solution and
of various rotating waves do not change in the presence

FIG. 5. Splitting of the antiphase limit cycle if one oscillator
slightly detuned. Parameters:UV516 V, 1/Rc50.15 kV21. ~a!
Initial solution for identical resistorsRV1

5RV2
5RV3

53.9 kV; ~b!

and ~c! two versions, 1/2 out and 1/2 in, of the antiphase lim
cycle for RV1

53.92 kV, andRV2
5RV3

53.9 kV.

FIG. 6. Phase diagram of new modes for the system with
detuned oscillator atUV near the Hopf bifurcation to the homoge
neous steady state. The heavy thick line is the boundary of
inhomogeneous SS I. The in-phase regime is unstable below
dotted line marked with the ‘‘In phase’’ label; the dotted line
marked with the 1/2 in~out! labels are the boundaries betwee
which the ‘‘in’’ and ‘‘out’’ antiphase regimes~see text for definition!
are stable. The solid line bounds the region of stability of the 0
antiphase solution, which overlaps with the regions where the
in-phase~solid dashed line! and 122 in-phase regimes are stab
The small black triangular area that caps the region 2,3,3 antip
is the region where the solution 4,5,5 antiphase is stable.
2-4
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detuning; however, the areas of existence of such solut
may shrink and/or be shifted in the phase diagram. The
lutions discussed have been examined in detail in@26# and
are presented here only for comparison with the new s
tions described below.

C. Dynamic traps near the stable homogeneous steady state

As the oscillators are stiff and are selectively coupled
diffusion-driven exchange, small detuning disrupts the sta
ity of the in-phase solution in the regionUV'15.2 V. The
boundary of the in-phase solution stability shifts up toUV
'15.6 V, affording the possibility of formation of add
tional attractors~Fig. 6!. Let us divide the solutions detecte
in this region into two groups and designate them asi , j ,k
in-phase andi , j ,k antiphase, wherei , j , and k are integers
denoting the numbers of full-amplitude oscillations pe
formed by individual oscillators in one period of the enti
system~which is the smallest common multiple of their p
riods!. The designation antiphase~in phase! means that the
second and the third~identical! oscillators move in antiphas
~ phase!. In each group, the solutions with differenti , j ,k do
not coexist but share segments of the boundaries in comm
Figures 7 and 8 depict the wave forms of them,n,n in-phase
andm,n,n antiphase solutions, respectively. As indicated
Sec. IV B, the basic antiphase solution can also appea
two forms now: 1/2 in and 1/2 out.

One can see in Fig. 6 that, when approaching the lo
boundaryUV515.2 V, the 1/2 out solution transforms, d

FIG. 7. Time series of slow variables for those solutions n
homogeneous SSs~see Fig. 6! in which two identical oscillators
move in phase:~a! in-phase DT (0,1,1 in phase! for UV515.3 V
and 1/RC50.5 kV21; ~b! solution 1,2,2 in phase forUV

515.4 V and 1/RC50.4 kV21; and~c! solution 2,3,3 in phase fo
UV515.58 V and 1/RC50.35 kV21. The time series of the de
tuned oscillator is marked by black squares.
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pending on the coupling strength, into the 4,5,5 antiph
solution~if the oscillators are coupled weakly!, into the 2,3,3
antiphase solution, or into the antiphase dynamic trap~the
solution designated as 0,1,1 antiphase!. As UV decreases, the
difference in the period between the first and the other t
oscillators grows, becauseT(UV ,RV) is a nonlinear function
~Fig. 4!. However, at the lowerUV limit that we consider, the
first oscillator is still detuned by no more than 3%.

The dynamic trap formation can be qualitatively e
plained as follows. If the period of one oscillator becom
even slightly longer than that of its partners, some criti
rate of inhibitor exchange exists at which the detuned os
lator fails to reach the point of transition to the other bran
of the nullcline. In other words, if the term (U222U1
1U3)/RC is almost always negative and close toI 12(UV
1U1)/RV1

, the right-hand part of Eq.~2! for the slow unit
oscillates around zero. This condition holds if the diffusi
partners rapidly alternate, keeping the term (U222U1
1U3)/RC below zero. This makes clear why the area whe
the DT exists resides close to the boundary of limit cy
creation in the isolated oscillator and why this area expa
with increasing coupling strength~Fig. 6!. For rapid alterna-
tion of diffusion partners, it is required that oscillations
the units be highly asymmetrical and that the units be s
that is, capable of jumping fast from one branch of t
nullcline to the other. Oscillation asymmetry is defined as
time ratio between the ascending and descending parts o

r
FIG. 8. Time series of slow variables for those solutions n

homogeneous SSs in which two identical oscillators move in
tiphase:~a! antiphase DT (0,1,1 antiphase! for UV515.3 V and
1/RC50.25 kV21; ~b! solution 2,3,3 antiphase forUV515.5 V
and 1/RC50.15 kV21; and ~c! solution 4,5,5 antiphase forUV

515.68 V and 1/RC50.14 kV21. Black squares mark the time
series of the first~detuned! oscillator.
2-5
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slow variableU wave forms of isolated oscillators. In th
case under study, the oscillation is highly asymmetrical
cause the intersection point of the main nullclines is near
of the extrema of the N-shaped nullcline.

If the coupling strength is large,U exchange can so con
siderably retard one of the oscillators moving along the cy
that it becomes unable to reach the point of transition eve
its neighbors oscillate in phase. In this way, an in-phase
emerges@Fig. 7~a!#. For the in-phase DT to emerge, it
required that oscillations of isolated oscillators be asy
metrical. Highly asymmetrical oscillations imply that two o
cillators almost instantly drop onto the right branch of t
N-shaped nullcline, causing the detuned oscillator to reve
the direction of its movement. As the oscillators move alo
the left branch of the nullcline, the phase shift between th
and the detuned oscillator diminishes until the latter st
receding and begins to move in the initial direction. Ho
ever, this coupling-induced delay in its movement is so la
that the second and third~identical! oscillators catch up with
it and pass it when moving on the left branch to the point
transition, again reaching this point earlier. The proces
then repeated.

Obviously, the period of the system is significantly shor
in this regime than in the antiphase DT because in the la
the inhibitory effect of theU exchange is pronounced o
most of the limit cycle. With decreasing coupling streng
the in-phase DT jumps into the 1,2,2 in-phase regime
which the first ~detuned! unit skips every other full-
amplitude oscillation of its neighbors@Fig. 7~b!#. As UV in-
creases, the 1,2,2 in-phase solution transforms into the 2
in-phase one@Fig. 7~c!# throughout the upper boundary, b
the area where the 2,3,3 in-phase regime exists is very
row.

It may seem that the 0,1,1 in-phase solution is degene
and will lose stability if all three oscillators are set to b
slightly different. However, the in-phase DT is stable agai
noise and exists even when the third oscillator moves m
rapidly than the second. With highly detuned oscillators,
area of its existence is narrow. However, if the differen
between the periods of the second and the third oscillato
1 –2%, this solution still occupies a large area in the para
eter plane. Figure 9 shows the area of existence of the 0
in-phase solution for the case when all three oscillators
different with respect toRVi

~as specified in the caption!. The

FIG. 9. Part of the phase diagram of the modes for the syste
which all oscillators are slightly different:RV1

53.92 kV, RV2

53.9kV andRV3
53.89 kV. Shadowed areas correspond to the a

ditional DT types. See Fig. 10 below for their time series.
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additional nonidenticality gives rise to solutions of this a
other types, including additional DTs. By way of examp
we show the areas of existence of two DTs, the 0,1,2
0,0,1 in-phase DTs~Fig. 9!.

If the coupling strength is sufficiently large andUV is
chosen near the boundary of the homogeneous SS, two
oscillators may be synchronized over a segment of the
jectory close to the maximum of the N-shaped nullcline. T
solution is similar to the 0,1,1 in-phase DT, but the fas
oscillator in this case is the first to reach the point of tran
tion, keeping the slower oscillators near this point. Ob
ously, the 0,0,1 solution is analogous to the 0,1,1 in-ph
solution in the system with one detuned oscillator in the c
when this oscillator is faster~rather than slower! than the
others. The 0,1,2 solution is intermediate between the 0
in-phase and 0,1,1 in-phase DTs. As seen in Fig. 10~a!, the
wave form of this solution can be divided into two parts. T
first part is specific in that the phase shift between the sec
and third oscillators is very small, as is typical of the i
phase 0,1,1 DT. The second part of the wave form is as in
0,0,1 solution, because now the first and second oscilla
move in phase.

V. DYNAMIC TRAPS NEAR STABLE INHOMOGENEOUS
STEADY STATES

The mechanism examined above for suppressing f
amplitude oscillations is also likely to operate in the vicini
of the stable inhomogeneous SSs. As mentioned abov
Sec. IV A, we search for DT solutions in this area of t
parameter plane (UV518 V–22 V) forRV1

54.15 kV and

RV2
5RV3

53.9 kV, which correspond to a few percent o
difference in the the period between the first and the ot
two oscillators. In this area, the free oscillation period is
nonmonotonic function ofUV , with a minimum at UV

in

-

FIG. 10. Time series of slow variablesUi for the dynamical
traps in the case when all oscillators are detuned near the hom
neous SS:~a! 0,1,2 DT forUV515.275 V and 1/RC50.6 kV21;
and ~b! 0,0,1 DT for UV515.215 V and 1/RC50.52 kV21.
Squares markU1. The segments where the trajectories of the s
ond and third or the first and second oscillators are almost indis
guishable are designated byU2,3 or U1,2, respectively.
2-6
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'20.7 V for RV53.9 kV ~dotted line in Fig. 11!. There-
fore, although the parametersRVi

are fixed, the first oscillator

turns out slower than the others atUV,20.7 V and faster at
UV.20.7 V. With the bifurcation parameterUV'20.7 V,
the free oscillation periods of the three oscillators are eq
at the chosenRVi

values, but the wave form shapes a
slightly different.

Figure 11 shows two boundaries of the stable inhomo
neous SS. The boundary marked in SS corresponds to
solution in which the dynamic variables of the second os
lator coincide with those of the third one. The bounda
marked out SS corresponds to the solution in which theI and
U values of the first oscillator are close to those of the sec
or the third oscillator~for more detail see Sec. IV B, whic
describes splitting the SS and the antiphase attractor in
presence of detuning!.

Comparing Figs. 3 and 11, one can see that, in the p
ence of even slight detuning, the area where the RW1 att
tor exists becomes significantly smaller. In addition, its sy
metry is broken, as judged from the distortion of t
trajectory. Specifically, the wave forms of the slow variab
of the symmetrical RW transform into the wave forms sho
in Fig. 12~a!. Evidently, the trajectory of the first~detuned!
oscillator is elongated near the maximum of the N-sha
nullcline. This loss of symmetry is not associated, howev
with any significant changes in the oscillation periods, b
cause the delays described are compensated for in other
ments of the trajectory, which are passed more rapidly.

Near the boundaries of the stable inhomogeneous SSs~but
below UV'20.7 V), the possibility arises that the two o
cillators moving in antiphase might keep the detuned os
lator short of the maximum of the N-shaped nullcline. In th
way, a 0,1,1 antiphase DT emerges. A comparison of
wave forms of the slow variables of the antiphase DTs sho
in Figs. 12~b! and 8~a! leads us to suggest that the reas
why one of the oscillators is locked near the maximum of
nullcline is the same for both DTs, and that it lies in t
alternate inhibitor influx. The DTs in the middle of the pha
diagram are similar to the DT near the homogeneous S

FIG. 11. Part of the phase diagram of the system with one
cillator slightly detuned near the inhomogeneous SS. The do
line indicatesUV at which the free periods of all the oscillators a
the same despite the fixed differences between theirRVi

values. See
text for an explanation of the differences between the in and out
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that the delays in the movement along the cycle are du
the formation of transient quasistationary states near
maximum of the nullcline. In both cases, it is the closenes
the SS, whether inhomogeneous or homogeneous, that m
their formation possible. Note that the emergence of D
near the inhomogeneous SSs is feasible only if the part
of the detuned oscillator alternate sufficiently frequently. B
ing slightly retarded near the maximum of the nullcline, t
first oscillator fails to reach the point of transition, remainin
short of it.

One can see in Fig. 11 that the antiphase DT may
stable even if the first oscillator has a free period shorter t
that of the others, because the lineUV'20.7 V can cross the
very limited area of existence of this solution so that a ti
part of it turns out to be slightly above this line. However,
contradiction arises with the explanation of this DT giv
above, because its stability is ensured by the properties o
local behavior of the first oscillator near the maximum of t
N-shaped nullcline. Locally, near the maximum of th
N-shaped nullcline, the first oscillator lags behind the tw
others despite the fact that their free periods are longer
this case, the shorter free period of the first oscillator is
counted for by its fast movement when it passes through
minimum of the N-shaped nullcline. We detuned the fi
oscillator so that the point where the nullclineU15RV1

I 1

2UV intersects the N-shaped nullcline is closer to its ma
mum than the corresponding intersection points of
nullclines of the other oscillators. Therefore, near the ma
mum ~minimum! of the nullcline, the first oscillator always
moves more~less! slowly than the two others.

s-
d

S.

FIG. 12. Time series of slow variablesUi of the periodic solu-
tions shown in the phase diagram~Fig. 11!: ~a! RW for UV

520 V and 1/RC50.27 kV21; ~b! DT 0,1,1 antiphase forUV

519.5 V and 1/RC50.32 kV21; and ~c! limit cycle 2,1,1 an-
tiphase forUV521 V and 1/RC50.32 kV21.
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As seen in Fig. 11, with increasing coupling strength,
0,1,1 antiphase solution transforms into out SS while co
isting with in SS. A similar phenomenon is observed near
homogeneous SS, where solutions from the same gr
~‘‘antiphase’’ or ‘‘in phase’’! share a common boundar
~which implies no overlapping between them!, while coex-
isting with the solutions from the other group. AboveUV
'20.7 V, it is natural to expect the appearance ofi ,i 21,i
21-type solutions, because the detuned oscillator is slig
accelerated in this area. The time series of the slow varia
for the 2,1,1 antiphase limit cycle are presented in Fig. 12~b!.
Because oscillator 1~fast! passes any of its partners whe
approaching the minimum of the N-shaped nullcline, the t
jectories of oscillators 2 and 3 contain quasistationary s
ments. Just belowUV'20.7 V, the 2,1,1 antiphase solutio
is also stable: the local situation near the minimum of
N-shaped nullcline is such that oscillator 1 again mov
more rapidly than the others~see the discussion of the st
bility boundaries of the 0,1,1 antiphase DT.

Let us make a general remark about the sensitivity of
phase diagram structure to the specific way in which
electronic scheme is detuned. Although detuning is small,
way we set it is essential in the central region of the ph
diagram. In this work, the same electronic scheme is con
ered as that in@26#. However, the detuning is set differently
RVi

rather than capacitances~as in@26#! are varied. Compar-
ing the phase diagrams~Figs. 13 and 14 in@26#! with those
in Figs. 6 and 11 in this study, one can see that the areas
the homogeneous SSs are similarly rich in attractors, un
the areas between the inhomogeneous SSs: the nonbas
tractors detected in this study were unobservable numeric
in @26#. This discrepancy stems from the method of detun
and is accounted for by the insufficient coupling of t
slower oscillator with its neighbors.

VI. EFFECTS OF EXTERNAL NOISE

To study the influence of fluctuations on the dynamics
the system~1!, ~2!, uncorrelated samples of the normal
distributed white noisej i(t) were added only to the right
hand sides of the slow variable equations~2!. This additive
noise is characterized bŷ j i(t)&50, ^j i(t),j j (t1t)&
5s2d i j d(t). When noise is present, we define the period
Ti5t i 112t i , wheret i are the moments when the trajecto
Ui(t) crosses the chosen value ofUcr at the same sign of the
derivative. TheTn’s defined in this way usually coincid
with the time intervals between two consecutive bursts of
fast variable. As with the DT, the area near the homogene
SS is most promising from the standpoint of revealing n
trivial noise-induced dynamic effects, even in the case
identical oscillators. The ISI distributions typical of this ar
(UV'15.2 V) are shown in Fig. 13 for different couplin
strengths.

As seen in this figure, the effect of noise does not co
down to a mere broadening of the peaks of the ISI distri
tions, which correspond to the periods of stable limit cycl
With the identical oscillators that we consider, only the
phase limit cycle is stable in this part of the parameter pl
for Rc

21 in the interval 0.4–0.6 kV21. Nevertheless, noise
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not only broadens the ISI peak corresponding to the pe
of the in-phase solution, but also gives rise to a discr
spectrum of ISIs with decreasing peak amplitudes. The
cretization effect of noise depends only slightly on its amp
tude and is observed up tos51025. However, as the system
moves farther away from the boundary of the homogene
SS ~that is, with increasingUV), the peaks tend to vanish
Obviously, as the oscillations are highly asymmetrical,
oscillators spent much time near the point of transition on
left branch of the N-shaped nullcline. This area in the vic
ity of the nullcline maximum is most vulnerable to nois
Away from the boundary of the homogeneous SS, the os
lations become less asymmetrical, accounting for the atte
ation of the effects of noise.

To gain more insight into the nature of the peaks in the
distributions shown in Fig. 13, fragments of the slow va
able wave forms that contain the ISIs contributing to the
peaks are presented in Fig. 14 (1/RC50.35 kV21) and Fig.
15 (1/RC50.2 kV21).

Let the oscillators be enumerated in the chain and let

FIG. 13. ISI distributions in the system of identical oscillato
near the Hopf bifurcation in the presence of uncorrelated noise
different coupling strengths:~a! 1/RC50.2 kV21 and N531 452;
~b! 1/RC50.35 kV21 and N538 099; and~c! 1/RC50.6 kV21

andN536 440. General parameters:UV515.3 V ands50.001.N
is the number of ISIs computed for a given distribution. For con
nience of microscopic analysis, the peaks are enumerated. T
numbers are used in Sec. VI to indicate which parts of the tra
tories contain the corresponding periods.
2-8
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MULTIRHYTHMICITY GENERATED BY SLOW VARIABL E . . . PHYSICAL REVIEW E 65 046232
consider their most likely trajectories in between the spi
produced by the first oscillator. For convenience, the m
ments of firing of the first oscillator are marked with vertic
dashed lines~in bold! and its trajectory is shown with a thic
solid line ~Figs. 14 and 15!. Each of the trajectories consid
ered below is designated with the same number as that
to mark the peak in the ISI distribution shown in Fig. 13
which the periods contained in that trajectory contribute.

~1! Let us start with Fig. 14~a!. In this noise sample, os
cillator 1 is the first to jump from the slow left branch of th
N-shaped nullcline. After its jump, coupling causes the ot
oscillators to stop advancing to the point of transition and
perform a trip along a small loop near the nullcline ma
mum. This loop in the phase portrait corresponds to the
flection in the wave form. Completing the cycle, the fir
oscillator begins to approach its partners. At this stage of
cycle, coupling reduces the phase shifts between the osc
tors. In the presence of this particular sample of noise,
first oscillator is again the first to jump despite the delay
its movement. For this event to occur, the lag between
first and the other two oscillators when they come close
the point of transition has to be less than the boosting ef
of noise on the first oscillator; therefore, the higher the no
amplitude and the greater the coupling strength, the hig

FIG. 14. Time series of slow variablesUi of the system of
identical oscillators in the presence of noise. ParametersUV

515.3 V, 1/RC50.35 kV21, s50.001 are as in Fig. 13~b!. The
solid line in bold shows the trajectory of oscillator 1. The mome
of two consecutive bursts of oscillator 1 are indicated by verti
dashed lines.
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the probability of the trajectory described. If the couplin
strength is insufficient, this pattern is unobservable@see Fig.
13~a!, 1/RC50.2 kV21#. With increasing coupling strength
its probability grows, and the peak corresponding to this p
tern arises in the ISI distributions@Fig. 13~b!, 1/RC
50.35 kV21, peak no. 1#. As the coupling strength in-
creases further@see Fig. 13~c!, 1/RC50.6 kV21#, the peak
area enlarges~and, hence, the probability of the event b
comes higher!. In addition, the mean time required for th
oscillator to make a trip along the trajectory described~let us
denote it T1) also increases with the coupling strengt
which shifts the peak to longerT values.

~2! Oscillators 1 and 2 jump from the slow left branch
the N-shaped nullcline@Fig. 15~a!#. This event causes oscil
lator 3 to perform a trip along a small loop near the nullcli
maximum. On completing the cycle, the oscillators are clo
to one another, but oscillators 1 and 2 are somewhat far
from the maximum than oscillator 3. Nevertheless, this p
ticular sample of noise is such that oscillator 1 surpas
oscillator 3 and is the first to jump. Along the trajecto
considered, the equation forU3(t) includes the coupling
term (U122U31U2)/RC'2(U12U3)/RC , becauseU2
'U1. In the previous case, this term was'(U12U3)/RC ,
becauseU3'U2.

Hence, it is certain that, when the oscillators approach
point of transition, the gap between the leading oscillato
and the lagging oscillators 1 and 2 is shorter on this traj
tory than the gap between the leading oscillator 1 and
lagging oscillators 2 and 3 on the previous trajectory d

s
l

FIG. 15. The same as in Fig. 14 but for 1/RC50.2 kV21.
2-9



u
m
e
o
b

e
th

p
e
ps
ke

e
hi
h
t
te

o
p

in
ry
t
to
e

int

ts
o
e

ge
gs
1
e

re
4

e
ri

th
th
rs
il

ch
s
he
s
il-
f

ge

tri-

p-

ed.
1

d,
are
ps
ove
any
the

y
ated

hy
ors
ile
ely

ely.
n
SSs.

ri-

by
e

po-
it-
t

d
the
es-
that
ver-
s.

ity
or-
ly
ns
oise
he
e
ere-
or-

of

ond
re-

E. I. VOLKOV AND D. V. VOLKOV PHYSICAL REVIEW E 65 046232
scribed in paragraph 1. Therefore, significantly lower co
pling strengths are sufficient to observe this trajectory. Co
pared withT1 , T2, which is the mean time required for th
oscillator to perform the described trip, depends on the c
pling strength to a lesser extent. This is understandable,
cause the coupling term for oscillator 1~which we monitor!
is either'(U32U1)/RC when it follows theT2 trajectory,
whereU1'U2; or '2(U32U1)/RC when it follows theT1
trajectory, whereU2'U3. As seen in Fig. 13, no noticeabl
shift in the peak 2 position could be obtained by varying
coupling strength.

~3! In Fig. 14~b!, all three oscillators simultaneously jum
from the slow left branch of the nullcline and move togeth
up to the next transition point, where oscillator 1 jum
again. Being unaffected by coupling, the mean time it ta
an oscillator to run this trajectory (T3) is equal to the period
of the in-phase limit cycle in the noise-free system. Howev
the probability of such an event depends on the phase s
between the oscillators near the transition points. The hig
the coupling strength, the smaller the phase shifts, and
more probable the noise-induced in-phase trip. As expec
the peak 3 amplitude, which is the lowest in Fig. 13~a!, in-
creases in 13~b!, and further increases in 13~c!.

~4! In the sections below, we explain why the period
oscillator 1 may become longer and longer. First, let it jum
from the left slow part of the nullcline@Fig. 15~c!#, causing
its partners to move together along the small-loop-contain
trajectory. Initially, the oscillators move along this trajecto
as in the case shown in Fig. 1, but, when they approach
next transition point, a random gate opens only for oscilla
2. It jumps, forcibly retarding oscillators 1 and 3 by the tim
required for running the loop. Near the next transition po
oscillator 1 gets a chance to be the first to fire. As seen
Fig. 15~b!, the trajectory considered consists of two par
The second part is essentially the same as the first one,
with oscillator 1 in place of oscillator 2. Therefore, the tim
required for oscillator 1 to complete the trajectory avera
T4'T11T1 @compare the positions of peaks 4 and 1 in Fi
13~b! and 13~c!#. The higher the probability that oscillator
will jump when approaching the point of transition, th
higher the probability of observing trajectory 1 and, cor
spondingly, the lower the probability of finding trajectory
among noise-induced time series.

~5! Oscillators 1 and 2 jump from the slow part of th
nullcline, and coupling causes oscillator 3 to make a t
along the small loop@Fig. 15~c!#. Until the next maximum,
trajectory 5 is as in case 2. However, the noise sample in
case is such that it is oscillator 3, rather than oscillator 1,
is the first to jump. After its jump, coupling sends oscillato
1 and 2 along the small loop in the phase plane. Meanwh
oscillator 3 moves along the main path and again approa
the point of transition, lagging somewhat behind oscillator
and 2. Oscillator 1 jumps earlier than oscillator 3. Like t
trajectory corresponding to peak 4, this trajectory consist
two parts:T5'T21T1. As in case 4, the higher the probab
ity of observing trajectory 2, the lower the probability o
finding trajectory 5 in the noise-induced time series.

~6! The trajectory presented in Fig. 15~d! is in essence
trajectory 5, in which the internal components are arran
04623
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in the reverse order. It means thatT6'T11T2 , T6'T5.
These periods contribute to the same peak of the ISI dis
butions.

~7! Yet another trajectory that contains only one loo
associated delay of oscillator 1 is presented in Fig. 14~c!.
With this noise sample, a series of two jumps is observ
Each time, two oscillators jump together, first oscillators
and 2 and then oscillators 2 and 3. The mean periodT7
'T21T2, as clearly seen in Fig.13~c!.

~8! The peaks in Fig. 13 are relatively regularly space
suggesting that the solutions giving rise to this spectrum
such that, until firing, an oscillator performs several tri
along the small loop. In fact, the reasoning presented ab
@~4!–~7!# can easily be extended to general cases with
number of trips. We confine ourselves to considering
simplest trajectory, which is presented in Fig. 14~d!. Obvi-
ously, the mean period equals 3T1, because the trajector
consists of three components, each of which can be tre
like the trajectory described in paragraph 1~after changing
oscillator numbering!.

Thus, a detailed analysis of the dynamics can explain w
the ISIs are so variable if three identical relaxation oscillat
are coupled viaU exchange. The results presented, wh
being relevant to stiff systems, do not change qualitativ
with the stiffness. Variation in the voltage supplyUV or in
the coupling strength also changes them only quantitativ
There existRC and UV intervals where the discretizatio
effect is most pronounced, e.g., near the homogeneous
In other areas of the phase diagram (UVP(16–17) V),
where two or three basic limit cycles coexist, the ISI dist
butions usually contain two or three peaks~see@22#!. How-
ever, this polymodality is less striking than that induced
noise in the ring of identical oscillators moving along th
unique in-phase attractor@Figs. 13~b! and 13~c!#.

The position of peak 3~in phase! in the ISI distributions is
independent of the coupling strength, unlike other peak
sitions, which vary differently with its increase. Peak spl
ting is clearly seen in Fig. 13~b!; however, this event is no
frequent. As 1/RC is about 0.35 kV21, peak 1 is close to
peak 2@Fig. 13~b!#, giving rise to relatively broad unresolve
peaks in this figure, in which the interpeak spacings are
largest. This means that the ISI distributions should be inv
tigated in a broad range of coupling strengths to be sure
the essential dynamic processes will not be masked by o
lapping and will manifest themselves in the ISI distribution

A parallel may be drawn between abnormal ISI variabil
and the sets of attractors described in Secs. III and IV. F
mally, the definition of deterministic attractors is valid on
in the absence of noise. However, for relaxation oscillatio
in the chosen area of the parameter plane, the effect of n
is restricted to quite a small part of the trajectory in t
vicinity of the maximum of the N-shaped nullcline. Nois
causes only short-term variations in the parameters. Th
fore, the basic ISI peaks can be brought into qualitative c
respondence with the attractors detected in the system
weakly detuned oscillators~see Sec. IV! and specifically re-
lated to detuning. For example, peaks 1, 2, and 3 corresp
to the 0,0,1 DT, 0,1,1 in-phase, and in-phase solutions,
spectively.
2-10
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MULTIRHYTHMICITY GENERATED BY SLOW VARIABL E . . . PHYSICAL REVIEW E 65 046232
As mentioned above~Sec. IV!, the basic in-phase solu
tion, which is unique in certain regions near the homo
neous SS, becomes unstable in the presence of small d
ing. In these parameter regions, in-phase oscillations
identical units are easily disrupted in the presence of no
@see, e.g., Fig. 14~b!#. Both phenomena have the same n
ture: the slow variable exchange between stiff oscillators

The permanent presence of small detuning should cha
the noise-induced ISI distributions. The retardation of o
oscillator often gives rise to multiloop long-period traject
ries. This effect for a ring with one retarded oscillator
illustrated in Fig. 16. To compare the ISI distributions, we
1/RC50.35 kV21, as in Fig. 13~b! for identical oscillators.
The distributions are pictured separately for the first osci
tor @Fig. 16~a!# and the two others@Fig. 16~b!#. As expected,

FIG. 16. ~a! ISI distribution for the detuned oscillator (N
512 281); and~b! ISI distribution for the other two oscillators (N
533 078). Parameters: UV515.3 V, 1/RC50.35 kV21, s
50.001,RV1

53.92 kV, andRV2
5RV3

53.9 kV.
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the detuned oscillator is more likely to have long ISIs,
compared with its partners, but qualitative differences
tween the distributions in Figs. 16 and 13~b! are difficult to
find; namely, the ISI distribution shape, the degree of int
peak splitting, and the mean interpeak spacing remain alm
unchanged.

Hence, with reasonable values of noise amplitudes
detuning, the latter produces no qualitative changes in
dynamic behavior of the oscillator ring.

In the middle of the phase diagram~near the boundaries
of the inhomogeneous SSs!, no noise-induced polymodality
of the ISI distributions can be observed even in the prese
of detuning, which gives rise to additional attractors. All t
basic solutions in this region remain stable against lo
amplitude noise. An increase in the noise amplitude bre
down these solutions, and the system settles onto the
phase attractor, which has the largest basin in this area o
parameter plane.

The sensitivity of the present solutions to noise varies i
broad range, but formally, like the basic ones, they are
stable against noise. The results of numerical experime
designed to determine the effect of noise on the mean
time of various solutions in a system of nonidentical oscil
tors are presented in Table I. The 0,1,1 antiphase DT is
servable if the noise amplitudes is lower than 0.008. The
RW is absolutely insensitive to the noise in this amplitu
range, whereas the 2,1,1 limit cycle persists ifs is lower
than 0.0008 and is immediately and completely broken do
at larger noise amplitudes.

Therefore, with properly chosen initial points, th
detuning-related nontrivial solutions in the vicinity of th
inhomogeneous SSs are quite observable in the presen
controlled noise. However, they do not manifest themsel
spontaneously in the ISI spectra, as they do in the vicinity
the homogeneous SS, because of the dominance of th
phase solution.

VII. DISCUSSION

Comprehensive studies of systems of several more or
identical oscillators have revealed the mechanisms wher
em of
the
in
TABLE I. Mean lifetimes~s! of the solutions near the boundary of the inhomogeneous SSs in a syst
nonidentical oscillators for various noise amplitudes (s). The parameters used in the computations are
same as those in Fig. 11~phase diagram!. Number of random trials used to obtain the mean is given
parentheses. If no decay of the solution was detected over timeX ~s!, its lifetime is written as ‘‘.X.’’

Solution,
values of

parameters s50.01 s50.008 s50.005 s50.003 s50.001 s50.0008

0,1,1 antiphase, 6.0 9.4 .185 .187 .189
UV519.5 V (216) (294)
1/RC50.35 kV21

2,1,1 antiphase, 1.5 1.7 2.0 3.0 27.0 .153
UV521.0 V ~224! ~258! ~255! ~250! ~36!

1/RC50.31 kV21

RW1, .336 .335
UV520.5 V
1/RC50.25 kV21
2-11
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E. I. VOLKOV AND D. V. VOLKOV PHYSICAL REVIEW E 65 046232
rhythms are generated~ @3,8,16,9,18,21,27#!. As shown re-
cently, multiple phase-locked states are typical of del
coupled limit-cycle oscillators@30#. Among them, the mos
expected are antiphase oscillations and rotating waves
several attractors coexist in the same region of the param
space, noise can induce infinite transitions between the
tractors. Therefore, in the presence of noise, the ISI distr
tions are expected to contain not only peaks correspondin
the oscillation periods of the attractors, but also peaks co
sponding to the characteristic times of transitions betw
the attractors. However, in the largest part of the areas w
the basic attractors coexist, the maximum ISI distribut
widths are determined by the attractor period ratio and
relatively small.

In our opinion, slow variable exchange between rela
ation oscillators is a powerful mechanism for generat
rhythms. For convenience, two-dimensional oscillators
usually studied, although they not always adequately co
spond to real processes. In such systems, additional s
limit cycles occupy large regions in the parameter space
have large basins of attraction. In addition, stiff systems
easy to govern by externally varying the parameters or ph
variables, because it is typical of such systems that t
quickly settle on the attractors and rapidly switch betwe
them. With an increase in the number of oscillators,
phase space volume rises less rapidly than the numbe
stable attractors. As a result, the so-called crowding of att
tors is observed@31#. In its turn, crowding enhances the e
fect of noise on the dynamics of the system.

In a previous study@26#, periodic regimes were examine
in the presence of small stationary detuning, which prove
be an important bifurcation parameter. In this study, we
cused on the analysis of complex patterns of ISI distributi
generated by uncorrelated noise in various regions of
parameter space in the presence or in the absence of s
detuning. In addition to the basic periodic attractors~see Sec.
IV !, coupling via slow variable exchange gives rise to a
riety of unexpected attractors. If the relaxation paramete
in a reasonable range («;0.1), slow variable exchange a
fords stability to DTs in a broad range of coupling strengt
but only near the boundary of creation of limit cycles
isolated oscillators@28#. As the relaxation parameter in
creases, the range of DT stability shrinks. However, DTs
readily generated in the presence of even small detuning~see
Sec. IV C!. Comprehensive analysis of the wave forms
one oscillator in a ring of identical oscillators~Sec. VI! re-
s,
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veals that long ISIs often result from randomly created m
or less long elements of the DT. As the segments of
trajectory where relaxation oscillators are sensitive to no
are quite small~only in the close vicinity of the nullcline
extrema!, noise can be interpreted as a source of short-liv
detuning, which delays one or two of the moving oscillato
Importantly, in the area near the Hopf bifurcation (UV
'15.2 V in our system! where the in-phase limit cycle is
formally stable, its attraction is weak, and it is a poor co
petitor against other randomly generated trajectories.

The situation is different near the inhomogeneous H
bifurcation (UV518 V–22 V). In this region of the param
eter space, small detuning also gives rise to different
gimes, but it almost does not affect the basin of attraction
the in-phase regime. Therefore, it depends on the way
which the system is detuned whether the DT is observabl
not ~see Sec. V!.

Thus, abnormally broad ISI distributions are quite po
sible for a system of three identical and simple~two-
dimensional! limit cycles coupled via slow variable ex
change. Such distributions are observed in large but spec
selected regions of the parameter space. It is evident from
microscopic analysis~Sec. VI! that the phenomenon de
scribed may be observed not just for three oscillators.

The ISI distribution presented, for example, in Fig. 13~b!
closely resembles the distribution obtained in studies of s
chastic resonance~SR! ~see, for example,@32#!. With classic
SR, the sensitivity of the system to noise is modulated by
external periodic signal. Our model is distinct in that t
sensitivity to noise is modulated by slow variable exchan
and the mean ISI is determined by the relaxation time of
slow variable. As no external periodic signal acts on o
system, we cannot speak about SR, but we can expect
tonomous’’ SR ~or, according to@34#, ‘‘coherence reso-
nance’’! to manifest itself@33#, because a change in the noi
level modulates the degree of ISI coherence. Work on thi
in progress.

In conclusion, it may be said that generation of abnorm
fluctuations in systems of coupled oscillators is not restric
to systems with local diffusion. Very recently, a study
globally coupled systems appeared that describes large
synchronizing effects of low-level noise@35#.
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