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Multirhythmicity generated by slow variable diffusion in a ring of relaxation oscillators
and noise-induced abnormal interspike variability
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The deterministic and noise-dependent dynamics of a ring of three Ohmically coupled electronic relaxation
oscillators are considered by means of numerical simulations. Each isolated oscillator is described by a set of
two ordinary differential equations with very different characteristic times. The emergence of the limit cycle
via the Hopf bifurcation results from the N-shaped current-versus-voltage characteristic of the nonlinear resis-
tor. The phase diagram is calculated for a ring of three such oscillators in the presence of small detuning.
Special attention is focused on two parameter areas, one near a transition to the homogeneous and the other
near the inhomogeneous stable steady state. Along with other nontrivial limit cycles, essentially asymmetrical
limit cycles termed dynamic traps may arise in these two areas. A dynamic trap is a regime in which one or two
oscillators do not perform full-amplitude oscillations and, correspondingly, do not generate spikes. The inter-
spike interval(ISl) distribution in the presence of noise is calculated as a function of the coupling strength in
both areas of the parameter plane. The distributions are extremely polymodal near the homogeneous steady
state even if the in-phase limit cycle is dominating. The origins of this abnormal enhancement of ISI variability
are discussed in detail. A similar analysis shows that nontrivial periodic attractors are observable in the vicinity
of the inhomogeneous stable steady states only if the level of noise is relatively low. In this case, the domi-
nance of the in-phase limit cycle basin results in an almost unimodal distribution of interspike intervals.
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[. INTRODUCTION become synchronized is much longer.
A system was recently studi¢@6] that consisted of three

Ensembles of coupled oscillators have been used for almost identical electronic oscillators coupled via resistors.
long time as models of biological processes. For example, iffhis type of coupling implies linear diffusion of only slow
[1], a population consisting of a large number of almost idenVariables(voltage in this specific cagewhich enhances the
tical oscillators, each of which is weakly coupled to all the Phase differences between the phase points located on the
others, is considered to be a model for the source of circadiafifferent branches of the N-shaped nulicline of the fast vari-
rhythms(see alsd2,3]). Long chains of almost linear oscil- able. However, this exghange does .not_affe.ct the stability of
lators are used to imitate the contraction waves of the smalf!e homogeneous stats-phase oscillationsin ensembles
intestine[4]. Small ensembles of four, six, or eight cells haveOf two-dimensional identical oscillators. The largest volume

; . ; - f the parameter space in systems of three identical oscilla-
E)Se_c%me popular in explaining the gaits of legged ammalfors with cyclic boundary conditions is occupied by so-called

The dynamics of locally coupled “theoretical” oscillators rotating waves(RWs) of various types. Rotating waves are

periodic solutions with the same wave foi(t) for each
[8—10, neurons[11] (see[12] for recent examplgs and : - i :
electronic[13,14, and chemica[15—20 oscillators is also oscillator, and the phase shifts by one-third of the period

. : X . between adjacent oscillators in a chain. A simple rotating
being studied extensively in order to reveal as many collecy,ye contains one spike of the fast variable per period. How-
tive modes as possible in systems consisting of identical ogyer, if siff oscillators are strongly coupled, more intricate
nearly identical elements. Comprehensive analysis of the dy=yys are also stable in certain parts of the parameter space.
namics of ensembles of relaxation oscillators has revealefihe second generic solution is an antiphase attractor, which
that several out-of-phase modes may be stable in a brogd characterized by the in-phase oscillation of two elements
parameter range if the stiffness of individual oscillators isphase-shifted by half a period relative to the third one. The
high and slow (recovery variable exchange dominates existence of these attractors does not depend on the choice of
[21,22. the model for the nonlinear oscillatpt0]. They have been
Although the dynamics of systems composed of relax-demonstrated in experiments with chemi¢a®] and elec-
ation oscillators is difficult to analyze analytically or numeri- tronic [14] systems.
cally, relaxation oscillators, in our opinion, describe the real- As shown both numerically and experimental®6], a
ity more adequately, because the trajectories of mangubtle increase in the period of one of the oscillators is re-
biological and chemical oscillators are far from being har-sponsible for the emergence of a large region in the param-
monic[23]. In addition, it is known from early worl4] and  eter space where a ring of coupled oscillators loses amplitude
from recent investigations of oscillators coupled via “fast symmetry. Specifically, full-amplitude oscillations become
threshold modulation]25] that arrays of relaxation oscilla- inhibited in the retarded oscillator. Asymmetrical periodic
tors are more suitable candidates for control systems thaattractors in which slow variable exchange causes at least
nonrelaxation ones because the time required for the latter tone oscillator to stop generating spikes rhythmically will be
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referred to below as “dynamic trapgDTs). Two models,
one describing two identical neuroi&7] and the other
three-membrane timef®8], have also been shown to pos-
sess stable highly asymmetrical solutions. However, the ar-
eas of their existence shrink rapidly with increasing stiffness
of the elements. For our set of parameters of the electronic
oscillator, such attractors are unobservable in the absence of
detuning. We demonstrate here that a minor modification of
the experimental setup used [i86] and subtle detuning in
the periods of oscillations of individual units may result in
the emergence of DTs in the vicinity of bifurcations from
oscillations not only to the homogeneous but also to the in-
homogeneous steady states.

With such a diverse set of stable attractors, it is of par- FIG. 1 Schem_e of the_experimental setup used to numer?cally
ticular importance to examine the role of noise in the gen2nalyZe its dynamic behavior. The setup consists of three nonlinear-
eration of collective behaviors. Therefore, in this study, we' (R) -containing oscillators connected in parallel. Resiskys

. . . . are different; all other parameters are homogene@is215 uF
continue to numerically analyze the dynamic properties of %ndL=33 mH. The supply voltagtl, and the coupling resistors

ring of three slightly detuned electronic oscillators in the R, are the control parameters; the variablésin the model equa-
presence of noncorrelated noise. Specifically, we consid&[ons are the voltage drops at capacitors.

the case when the internal parameters of individual oscilla-

tors determine the extent of detuning without affecting the Il. ELECTRONIC OSCILLATOR
coupling strength. In the presence of noise, the interspike
interval (ISI) distributions for full-amplitude oscillations are
convenient characteristics of the dynamic behavior of th

SYS‘e”.‘- Itis usuglly expectegl that the relqtive peak gmpli- arameters that were used[i26]. As seen in the figure, an

t“de? n the 151 histograms will reflect the sizes of b_a_sms %%ndividual electronic oscillator is ahC circuit containing a

coexisting stable attractors and that the peaks’ positions are,jinear resistorR /. which accounts for the N-shaped
ni»

determined by the periods of the limit cycles and/or by theg rrent.versus-voltage characteristic and, hence, for the
characteristic times of transitions between the attractors.  N_shaped nullcline in the set of differential equations corre-

Detailed analysis of wave forms reveals the mechanismgponding to this schem@ig. 1):
giving rise to the peaks in the ISI distributions in the ranges
of existence of periodic attractors and in the range of exis-

We chose to study numerically a ring of three electronic
oscillators coupled through Ohmic resistoFsg. 1). Simula-
ions were performed for the same nullcline and relaxation

|
tence of a unique in-phase regime near the transition to the Lazui_s“i)' @
homogeneous steady state. We demonstrate how noise inter-
action with intense slow variable exchange generates abnor- du; Uy+U; U_;—2U;j+ Ui,
mally long ISIs even for identical oscillators, which can Car = Ry I+ R, : (2

move only in phase or in antiphase in the absence of noise.

The relationships are discussed between long ISIs and detegherei=1,2,3 (mod 3).

ministic detuning-dependent attractors, including DTs. As @ |n its turn, a nonlinear resistor is a separate electronic

counterexample to this unusual spiking regime, we describgevice. Its current-versus-voltage characteristic has been de-

the expected noise-induced spiking behavior near the transiermined experimentally in a previous stuésee[26] for

tion to inhomogeneous steady states, where both a DT anddetaily. The individual oscillator’s phase portrait and the

RW exist, but the ISl distributions remain unimodal becausajme series of the dynamic variables are shown in Fig. 2. As

of the strong dominance of the in-phase limit cycle. clearly seen in this figure, the oscillators with the parameters
The paper is organized as follows. Sections Il and llichosen are stiff.

present a brief description of the isolated oscillator and the The oscillators are made nonidentical by setting their re-

numerical methods, respectively. The deterministic dynamicsistancesR,, (rather than capacitances, as in the previous

is examined in Sec. IV by constructing the phase diagram fostudy [26]) to slightly different values. We chose the latter

three identical oscillators; their detuning is described in Sechased on the dependence of the periodRynfor different

IVA. Thereafter, we consider the evolution of the basicy,, values(see Sec. IV A Note that, with this approach, we

modes in the presence of small detunif®ec. IVB and  have the period of the isolated oscillator independent of the
demonstrate the existence of a DT near the homogeneoygrameters that control the coupling strength.

steady statdSec. IV Q. The detuning-dependent DTs and

the phase diagram near the stable inhomogeneous steady Ill. METHODS

states are investigated in Sec. V. Section VI presents a “mi-

croscopic” analysis of the main peaks in the ISI distribu- Equations(1) and (2) were solved using general numeri-
tions. The preliminary results of this work have been brieflycal methods. For not very stiff equations, we implemented an
reported elsewherg29]. explicit fourth-order(double-precisionRunge-Kutta routine
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19 FIG. 3. Part of the phase diagram of basic periodic attractors for
180 identical oscillators. Different types of rotating wave are designated
175 as RW1, RW2, RW5, and RW7; 1/2 indicates the antiphase limit
76 @ cycle. The attractors are stable inside the closed regions depicted by
18= the appropriate lines. Note that there are two regions where RW1 is
14 stable. The boundaries of the stable inhomogeneous steady states
13= (“amplitude deaths) SS | and SS Il are indicated by solid lines. In
: region |, the steady statés, , are large and; , small, whileU3 is

small andl; large. In region II, one oscillator has largé while

two others have small; .
0 05 1 1.5 2 25 3

TIME (sec) and SS li(“amplitude death” in other terminology; see the
gcaption to Fig. 3 As in [26], the solutions observed for
(b) time series of its dynamic variabléslow U and fastl) for  identical oscillators will be referred to as “basic” modes.
Uy=20 V. The limit cycle and main nullclines are indicated by ~ In€quality of limit cycles may be generated by changes in
solid and dashed lines, respectively. one or more control parameters. The differences between the
periods of uncoupled oscillators may serve as an index of

with step size controlsubroutine namedrKGS from thessp  detuning. As mentioned above, variation in ﬂﬁei values,
library). If the stiffness was large, implicit integrators were which determine the slope of one of the main isocliks
used of whiclrRADAUS proved most efficient. To be confident —R |, —uU,,, will be used to study the role of detuning in
that the results obtained are not numerical artifacts or Iongt-he gleneration of collective modes
lived transients, we tested whether they varied depending on The period of a free oscillator is‘ a nonlinear function of
the method used and/or on the accuracy set in computationt%e control . .

: ; . o parametel®, and Uy, (see Fig. 4 Even if the
The algorithms were constructed for seeking and 'dent'fymgoscillators are only slightly different with respect Ry,

the attractors by randomly varying the initial points and ob-_ " . ) X i
serving the dynamics of changes in the ISIs of each oscillatotrhe'r periods may vary considerably, depending on the pa

during the settling of the system on the attractme|22] for rameterU,,. We confine ourselves to examining oscillators

FIG. 2. (a) Phase portrait of the isolated electronic oscillator an

that differ in the free period by no more than 1% to 3%.

more details
| | | | |
IV. DETERMINISTIC DYNAMICS 12 175 185 19.5 20.5 V-
16.5 ’
A. The system of identical oscillators and the method ~11 -
for its detuning 8
Even for identical oscillators, quite complex solutions ex- 2
ist in the model(1), (2) in various areas of the parameter Q 09 -
plane (Fig. 3 here or Fig. 4 if26]). In addition to the in- ©
phase solutiofwhich is stable everywhere in the parameter E‘ 0.8 - 7
plane, Fig. 3 depicts the areas occupied by stable rotatingk )
=, . . o 0.7
waves of various types. Along with a simple RW whose pe-
riod contains only one interspike interval, we observed re- 0.6 -

gimes in which two, five, and seven interspike intervals per
one period were preserfRW2, RW5, and RW7, respec- 2 3 4 5 6 7 8
tively). A large area of the parameter plane is occupied by the RV (k ohm)
stable antiphase attractor marked 1/2 in Fig. 3.

Along with periodic attractors, the phase diagram shows FIG. 4. Dependences of free periods on paramBtgfor dif-
the boundaries of stable inhomogeneous steady states S3etentU,, .
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This detuning index is so small that, wiEk\,i fixed, it is not

feasible to keep it at this level throughout thk, range
where the limit cycle is stable. Therefore, we will search for
dynamic traps in two separate areas of the phase diagram tha
are most promising in this respect. One of these two areas is
located near the boundary of the homogeneous steady state ¢ 0.5 1 1.5 2
Uy=15.2 V-16.5 V. Formally, this steady state is not ho- ~
mogeneous and not unique if trﬁe,i are different. But we 2o

prefer to use the term “homogeneous solution,” bearing in § 8
mind that the slightly split solutions form a compact group. H 7
The second areaUy=18 V-22 V,1R:.=0.2 kO - 8
0.6 k)~ 1) borders on two inhomogeneous stable steady > 6
states SS1 and SS2. 0 0.5 1 1.5 2

To produce additional DT modes, it is usually sufficient to

9
8
7
6

w

make only one oscillator slightly different from its partners. 9 U i
Therefore, computations in the area near the boundary of the 8| ! -
homogeneous steady state were performed Rwl 7: U., ]
=3.92 K) andRy, =3.9 K);and in the area near SS1 and 6l ¢ I | | N
SS2 forRVl=4.15 K2 and R\,23= 3.9 kQ. 0 0.5 1 15 2

In the area near the boundary of the homogeneous stead) TIME (sec)
state, solutions were found that existed only if two of the
three oscillators were identical; therefore we examined the FIG. 5. Splitting of the antiphase limit cycle if one oscillator is
case when all threeR, values were different:Ry, f:-?-zzo?ett-gm} .Zz:i.r:;t?z.‘é;rls V’RllRC;o'lSB gm |;(; ((S;
iti uti i i i v.=Ry.=Ry.=3. ;

=3.92 K2, Ry,=3.9 K}, andRy,=3.89 K. and (c) two versions, 1/2 out and 172 in,2 of the antiphase limit
cycle for Ry,=3.92 K2, andRV2=RV3:3.9 k().
B. Evolution of basic modes in the presence of small detuning o . o

with i/j/k>1 being the numbers of oscillations performed

All the basic modes are quite stable against relatively lowhy each oscillator in one full period. In both cases, the ISI
noise and small detuning. However, the presence of detuningjstributions are narrow because of the smallness of detun-
makes it necessary to refine the classification of those basjfg; therefore, we do not examine them. The wave forms of
attractors in which there is no phase shift between two of thehe in-phasgmore precisely, almost in-phassolution and
three oscillators. These solutions include the antiphase attracf various rotating waves do not change in the presence of
tor 1/2 (one oscillator moves in antiphase with two others

and the inhomogeneous steady states. Let us consider, fc 16.4}),> ! ! ! ! ! - gr11i1t-phase
example, the 1/2 limit cycle in which oscillators with indices T
1 and 2 move in phase with each other and in antiphase witt 63 b | Ltinphese
the third oscillator{Fig. 5(@]. Specifically, we shall retard & 16 in 1 N2 ase
the first oscillator by varyingRy,. When it begins to lag § ;&ﬁ 122
behind the second oscillator, the solution still resembles thej ) n-phase
antiphase solution. In fact, the lag between these oscillators 15.8 Sicpnase T . [ s
is small, and their wave forms still remain identi¢ake Fig. 15 o i i
5(b)]. If the third oscillator is retarded, the other two con- ﬂ ﬂﬂ | 4 A

15.2

tinue to move in phase with each other, Figc)5Thus, small
detuning splits the antiphase attractor into two other modes 0.1 02 03 04 05 06 07
which have different boundaries of stability in the phase dia- 1/Rg (k onm™)

gram. In Fig. 6, these solutions are designated as 1/2 out

(|de_nt|c_al osmllz_ators_move In antlph_amd 1/.2 in(in-phase detuned oscillator atJ,, near the Hopf bifurcation to the homoge-
oscillations of identical elementsSimilar refinements can neous steady state. The heavy thick line is the boundary of the
be made for the boundaries of steady state stability. How:- '

: . o . ; Inhomogeneous SS |. The in-phase regime is unstable below the
ever, in this case, the shifts in the phase point coordinates 'Hotted line marked with the “In phase” label; the dotted lines

the six-dimensional phase space are used, rather than the;yeq with the 1/2 infout) labels are the boundaries between
phase shifts between the oscillators, because they do not gpjch the “in” and “out” antiphase regimessee text for definition
cillate. . o _ are stable. The solid line bounds the region of stability of the 011

Along with splitting the boundaries of steady states andantiphase solution, which overlaps with the regions where the 011
antiphase attractor stability, an expected result of detuning ig-phase(solid dashed lineand 122 in-phase regimes are stable.
the emergence df) quasiperiodical regimes and/6r) mul-  The small black triangular area that caps the region 2,3,3 antiphase
tiple synchronization, that is, long-perioti /k-type regimes, s the region where the solution 4,5,5 antiphase is stable.

FIG. 6. Phase diagram of new modes for the system with one
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FIG. 7. Time series of slow variables for those solutions near
homogeneous SSsee Fig. 6 in which two identical oscillators FIG. 8. Time series of slow variables for those solutions near
move in phase(a) in-phase DT (0,1,1 in phaséor U,=15.3 V. homogeneous SSs in which two identical oscillators move in an-
and 1Rc=0.5 K)~% (b) solution 1,22 in phase forUy tiphase:(a) antiphase DT (0,1,1 antiphaséor U,=15.3 V and
=15.4 Vand IRc=0.4 K™% and(c) solution 2,3,3 in phase for 1/R.=0.25 K2~ L; (b) solution 2,3,3 antiphase fdd,=15.5 V
Uy=15.58 V and 1R-=0.35 K2~ 1. The time series of the de- and 1R:.=0.15 K2~ !; and (c) solution 4,5,5 antiphase fdd,,
tuned oscillator is marked by black squares. =15.68 V and 1R:.=0.14 K)~*. Black squares mark the time

series of the firstdetuned oscillator.

detuning; however, the areas of existence of such solutions

may shrink and/or be shifted in the phase diagram. The SQsenging on the coupling strength, into the 4,5,5 antiphase
lutions discussed have been examined in detaj2] and  q)tion(if the oscillators are coupled weakyinto the 2,3,3
are presenj[ed here only for comparison with the new SOIuéntiphase solution, or into the antiphase dynamic titap
tions described below. solution designated as 0,1,1 antiphage U,, decreases, the
difference in the period between the first and the other two
C. Dynamic traps near the stable homogeneous steady state  gscillators grows, becaudgUy, ,Ry) is a nonlinear function
As the oscillators are stiff and are selectively coupled by(Fig. 4. However, at the lowed, limit that we consider, the
diffusion-driven exchange, small detuning disrupts the stabilfirst oscillator is still detuned by no more than 3%.
ity of the in-phase solution in the regiddy,~15.2 V. The The dynamic trap formation can be qualitatively ex-
boundary of the in-phase solution stability shifts uptlg  Plained as follows. If the period of one oscillator becomes
~15.6 V, affording the possibility of formation of addi- €ven slightly longer than that of its partners, some critical
tional attractorgFig. 6). Let us divide the solutions detected rate of inhibitor exchange exists at which the detuned oscil-
in this region into two groups and designate themi gk lator fails to reach the point of transition to the other branch
in_phase andlj,k antiphase, Wherélj, andk are integers of the nullcline. In other WordS, if the termU(2—2U1
denoting the numbers of full-amplitude oscillations per-+U3)/Rc is almost always negative and closelto-(Uy
formed by individual oscillators in one period of the entire +U1)/Ry,, the right-hand part of Eq2) for the slow unit
system(which is the smallest common multiple of their pe- oscillates around zero. This condition holds if the diffusion
riods). The designation antiphasgn phas¢ means that the partners rapidly alternate, keeping the terd,{2U;
second and the thirdentica) oscillators move in antiphase + U3)/R¢ below zero. This makes clear why the area where
( phase. In each group, the solutions with differeinf,k do  the DT exists resides close to the boundary of limit cycle
not coexist but share segments of the boundaries in commouoreation in the isolated oscillator and why this area expands
Figures 7 and 8 depict the wave forms of then,n in-phase  with increasing coupling strengtlfrig. 6). For rapid alterna-
andm,n,n antiphase solutions, respectively. As indicated intion of diffusion partners, it is required that oscillations of
Sec. IV B, the basic antiphase solution can also appear ithe units be highly asymmetrical and that the units be stiff,
two forms now: 1/2 in and 1/2 out. that is, capable of jumping fast from one branch of the
One can see in Fig. 6 that, when approaching the lowenullcline to the other. Oscillation asymmetry is defined as the
boundaryU,=15.2 V, the 1/2 out solution transforms, de- time ratio between the ascending and descending parts of the
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FIG. 9. Part of the phase diagram of the modes for the system in 8
which all oscillators are slightly differentRVl=3.92 K2, Ry, 7
=3.9K) and RV3=3.89 K. Shadowed areas correspond to the ad- g
ditional DT types. See Fig. 10 below for their time series. 0 1 2 3

TIME (sec)
slow variableU wave forms of isolated oscillators. In the

case under study, the oscillation is highly asymmetrical be- FIG. 10. Time series of slow variablds; for the dynamical
cause the intersection point of the main nullclines is near on&aps in the case when all oscillators are detuned near the homoge-
of the extrema of the N-shaped nulicline. neous SS(a) 0,1,2 DT forUy=15.275 V and Rc=0.6 kQ:i

If the coupling strength is large) exchange can so con- @nd (® 001 DT for Uy=15.215 V and Rc=0.52 K1~
siderably retard one of the oscillators moving along the cycleg>duares mark,. The segments where the trajectories of the sec-
that it becomes unable to reach the point of transition even i nq and third or the first and second oscnlator§ are almost indistin-
its neighbors oscillate in phase. In this way, an in-phase ppuishable are designated bl or Uy 2, respectively.
emerges Fig. 7(@)]. For the in-phase DT to emerge, it is N . S ) ) .
required that oscillations of isolated oscillators be asymaddnmnal nonidenticality gives rise to solutions of this and
metrical. Highly asymmetrical oscillations imply that two os- Other types, including additional DTs. By way of example,
cillators almost instantly drop onto the right branch of theWe show the areas of existence of two DTs, the 0,1,2 and
N-shaped nullcline, causing the detuned oscillator to reversg,0,1 in-phase DT$Fig. 9.
the direction of its movement. As the oscillators move along If the coupling strength is sufficiently large andl, is
the left branch of the nulicline, the phase shift between thenghosen near the boundary of the homogeneous SS, two slow
and the detuned oscillator diminishes until the latter stop®scillators may be synchronized over a segment of the tra-
receding and begins to move in the initial direction. How- jectory close to the maximum of the N-shaped nulicline. This
ever, this coupling-induced delay in its movement is so largéolution is similar to the 0,1,1 in-phase DT, but the faster
that the second and thifitlentica) oscillators catch up with ~ 0scillator in this case is the first to reach the point of transi-
it and pass it when moving on the left branch to the point oftion, keeping the slower oscillators near this point. Obvi-
transition, again reaching this point earlier. The process i®usly, the 0,0,1 solution is analogous to the 0,1,1 in-phase
then repeated. solution in the system with one detuned oscillator in the case

Obviously, the period of the system is significantly shorterwhen this oscillator is fastefrather than slowerthan the
in this regime than in the antiphase DT because in the lattepthers. The 0,1,2 solution is intermediate between the 0,0,1
the inhibitory effect of theU exchange is pronounced on in-phase and 0,1,1 in-phase DTs. As seen in Figa)l@he
most of the limit cycle. With decreasing coupling strength,wave form of this solution can be divided into two parts. The
the in-phase DT jumps into the 1,2,2 in-phase regime, irfirst partis specific in that the phase shift between the second
which the first (detuned unit skips every other full- and third oscillators is very small, as is typical of the in-
amplitude oscillation of its neighbofig. 7(b)]. As Uy, in- phase 0,1,1 DT. The second part of the wave form is as in the
creases, the 1,2,2 in-phase solution transforms into the 2,3@0,1 solution, because now the first and second oscillators
in-phase onéFig. 7(c)] throughout the upper boundary, but move in phase.
the area where the 2,3,3 in-phase regime exists is very nar-
row. V. DYNAMIC TRAPS NEAR STABLE INHOMOGENEOUS

It may seem that the 0,1,1 in-phase solution is degenerate STEADY STATES
and will lose stability if all three oscillators are set to be

slightly different. However, the in-phase DT is stable against . N . . X 2
gnty b N mplitude oscillations is also likely to operate in the vicinity

noise and exists even when the third oscillator moves mor f the stable inh S3s. A " d ab .
rapidly than the second. With highly detuned oscillators, thed! (€ stableé INhomogeneous 5ss. AS Mentioned above in

area of its existence is narrow. However, if the diﬁerencesec' IVA, we search for DT solutions in this area of the
between the periods of the second and the third oscillators Rarameter planely=18 V-22 V) forRy,=4.15 K} and
1-2%, this solution still occupies a large area in the paramRv,=Ry,=3.9 K2, which correspond to a few percent of
eter plane. Figure 9 shows the area of existence of the 0,1difference in the the period between the first and the other
in-phase solution for the case when all three oscillators aréwo oscillators. In this area, the free oscillation period is a

different with respect tRy, (as specified in the captipiThe ~ nonmonotonic function ofU,,, with a minimum atU,,

The mechanism examined above for suppressing full-
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FIG. 11. Part of the phase diagram of the system with one os- 0 1 2 3 4
cillator slightly detuned near the inhomogeneous SS. The dottec
line indicatesU\, at which the free periods of all the oscillators are
the same despite the fixed differences between Fmeiir/alues. See
text for an explanation of the differences between the in and out SS

~20.7 V for Ry=3.9 k) (dotted line in Fig. 1L There-
fore, although the parametelRy, are fixed, the first oscillator
turns out slower than the othersla{<20.7 V and faster at
U,>20.7 V. With the bifurcation parametéds,,~20.7 V, FIG. 12. Time series of slow variablés of the periodic solu-
the free oscillation periods of the three oscillators are equaions shown in the phase diagraffig. 11): (8 RW for Uy
at the choserR\,i values, but the wave form shapes are=20 V and 1R.=0.27 K2 %; (b) DT 0,1,1 antiphase fotJ,
slightly different. =19.5 V and 1R.=0.32 K2~ %; and (c) limit cycle 2,1,1 an-
Figure 11 shows two boundaries of the stable inhomogeliPhase forUy=21 V and 1Rc=0.32 .
neous SS. The boundary marked in SS corresponds to the
solution in which the dynamic variables of the second oscilthat the delays in the movement along the cycle are due to
lator coincide with those of the third one. The boundarythe formation of transient quasistationary states near the
marked out SS Corresponds to the So'ution in Wh|CH med maXimUm Of the nU”C”ne. In bOth cases, |t iS the C|OSEHESS to
U values of the first oscillator are close to those of the seconée SS, whether inhomogeneous or homogeneous, that makes
or the third oscillator(for more detail see Sec. IV B, which their formation possible. Note that the emergence of DTs
describes splitting the SS and the antiphase attractor in tH@ear the inhomogeneous SSs is feasible only if the partners
presence of detuning of the detuned oscillator alternate sufficiently frequently. Be-
Comparing F|gs 3 and 11, one can see that, in the preéng S“ghtly retarded near the maximum of the nU”C”ne, the
ence of even slight detuning, the area where the RW1 attradirst oscillator fails to reach the point of transition, remaining
tor exists becomes significantly smaller. In addition, its sym-Short of it.
metry is broken, as judged from the distortion of the ©One can see in Fig. 11 that the antiphase DT may be
trajectory. Specifically, the wave forms of the slow variablesstable even if the first oscillator has a free period shorter than
of the symmetrical RW transform into the wave forms shownthat of the others, because the lidg~20.7 V can cross the
in Fig. 12a). Evidently, the trajectory of the firgtetuned ~ Very limited area of existence of this solution so that a tiny
oscillator is e|0ngated near the maximum of the N-Shape(ﬂ)art of it turns out to be Sllghtly above this line. However, no
nullcline. This loss of symmetry is not associated, howevercontradiction arises with the explanation of this DT given
with any significant changes in the oscillation periods, be-2bove, because its stability is ensured by the properties of the
cause the de|ays described are Compensated for in other Ségcal behavior of the first oscillator near the maximum of the
ments of the trajectory, which are passed more rapidly. ~ N-shaped nulicline. Locally, near the maximum of the
Near the boundaries of the stable inhomogeneouiﬁﬁs N—Shaped nullcline, the first oscillator |agS behind the two
below U,~20.7 V), the possibility arises that the two os- others despite the fact that their free periods are longer. In
cillators moving in antiphase might keep the detuned oscilthis case, the shorter free period of the first oscillator is ac-
lator short of the maximum of the N-shaped nullcline. In thiscounted for by its fast movement when it passes through the
Way' a 0'1’1 antiphase DT emergesl A Comparison of th@']|n|mum of the N-Shaped nullcline. We detuned the first
wave forms of the slow variables of the antiphase DTs show®scillator so that the point where the nullcling =Ry I,
in Figs. 12Zb) and &a) leads us to suggest that the reason—U,, intersects the N-shaped nulicline is closer to its maxi-
why one of the oscillators is locked near the maximum of themum than the corresponding intersection points of the
nullcline is the same for both DTs, and that it lies in the nullclines of the other oscillators. Therefore, near the maxi-
alternate inhibitor influx. The DTs in the middle of the phasemum (minimum) of the nulicline, the first oscillator always
diagram are similar to the DT near the homogeneous SS imoves morgles9 slowly than the two others.

2
TIME (sec)
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As seen in Fig. 11, with increasing coupling strength, the 0.06 T
0,1,1 antiphase solution transforms into out SS while coex- 0.05 a |
isting with in SS. A similar phenomenon is observed near the 0.04 i
homogeneous SS, where solutions from the same group 1dN
(“antiphase” or “in phase” share a common boundary N dT 0.03 1
(which implies no overlapping between themwhile coex- 0.02 - 1
isting with the solutions from the other group. Abouk, 0.01 .
~20.7 V, it is natural to expect the appearance ,of- 1, 0 1 L
—1-type solutions, because the detuned oscillator is slightly 6 8 10
accelerated in this area. The time series of the slow variables 0.04 I I
for the 2,1,1 antiphase limit cycle are presented in Figb1L2 B 1
Because oscillator Ifast passes any of its partners when 0.03 i
approaching the minimum of the N-shaped nulicline, the tra- 1_ Cﬂ 0.02
jectories of oscillators 2 and 3 contain quasistationary seg- N dT ™ ]
ments. Just below,,~20.7 V, the 2,1,1 antiphase solution 0.01 i
is also stable: the local situation near the minimum of the _
N-shaped nullcline is such that oscillator 1 again moves 0 ' !
more rapidly than the othersee the discussion of the sta- 0 2 4 6 8 10
bility boundaries of the 0,1,1 antiphase DT. 0.03 —— I T I

Let us make a general remark about the sensitivity of the L3 c |
phase diagram structure to the specific way in which the 0.02 | ]
electronic scheme is detuned. Although detuning is small, the 1dN
way we set it is essential in the central region of the phase N dT
diagram. In this work, the same electronic scheme is consid- 0.01
ered as that i126]. However, the detuning is set differently:

R\,i rather than capacitancéas in[26]) are varied. Compar- 0

ing the phase diagrani{figs. 13 and 14 iri26]) with those

in Figs. 6 and 11 in this study, one can see that the areas near
the homogeneous SSs are similarly rich in attractors, unlike
the areas between the inhomogeneous SSs: the nonbasic at-FIG. 13. ISI distributions in the system of identical oscillators
tractors detected in this study were unobservable numericallgear the Hopf bifurcation in the presence of uncorrelated noise for
in [26]. This discrepancy stems from the method of detuningflifferent coupling strengthsa) 1/Rc=0.2 k2~ andN=31452;

and is accounted for by the insufficient coupling of the(® 1/Rc=0.35 K2~* and N=38099; and(c) 1/Rc=0.6 K2™*
slower oscillator with its neighbors. andN= 36 440. General parametets$;,=15.3 V ando=0.001.N

is the number of ISIs computed for a given distribution. For conve-
nience of microscopic analysis, the peaks are enumerated. Their
VI EFFECTS OF EXTERNAL NOISE numbers are used in Sec. VI to indicate which parts of the trajec-

To study the influence of fluctuations on the dynamics oftories contain the corresponding periods.
the system(1), (2), uncorrelated samples of the normally
distributed white nois&;(t) were added only to the right- not only broadens the ISI peak corresponding to the period
hand sides of the slow variable equatiq@s This additive  of the in-phase solution, but also gives rise to a discrete
noise is characterized byé(t))=0, (&(1).&(t+7)) spectrum of 1SIs with decreasing peak amplitudes. The dis-
=025ij o(7). When noise is present, we define the period agretization effect of noise depends only slightly on its ampli-
Ti=t;,1—t;, wheret; are the moments when the trajectory tude and is observed up to=10"°. However, as the system
U;(t) crosses the chosen valueldf, at the same sign of the moves farther away from the boundary of the homogeneous
derivative. TheT,’s defined in this way usually coincide SS (that is, with increasindJ,/), the peaks tend to vanish.
with the time intervals between two consecutive bursts of th@dbviously, as the oscillations are highly asymmetrical, the
fast variable. As with the DT, the area near the homogeneousscillators spent much time near the point of transition on the
SS is most promising from the standpoint of revealing nondeft branch of the N-shaped nulicline. This area in the vicin-
trivial noise-induced dynamic effects, even in the case oity of the nullcline maximum is most vulnerable to noise.
identical oscillators. The ISI distributions typical of this area Away from the boundary of the homogeneous SS, the oscil-
(Uy=~15.2 V) are shown in Fig. 13 for different coupling lations become less asymmetrical, accounting for the attenu-
strengths. ation of the effects of noise.

As seen in this figure, the effect of noise does not come To gain more insight into the nature of the peaks in the ISI
down to a mere broadening of the peaks of the ISI distribudistributions shown in Fig. 13, fragments of the slow vari-
tions, which correspond to the periods of stable limit cyclesable wave forms that contain the ISIs contributing to these
With the identical oscillators that we consider, only the in- peaks are presented in Fig. 14R¢~0.35 K2~ 1) and Fig.
phase limit cycle is stable in this part of the parameter pland5 (1Rc=0.2 k™ 1).
for R_' in the interval 0.4-0.6 ® ~*. Nevertheless, noise Let the oscillators be enumerated in the chain and let us
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FIG. 15. The same as in Fig. 14 but foR=0.2 k1.

FIG. 14. Time series of slow variabldd; of the system of
identical oscillators in the presence of noise. Paramet&ys  the probability of the trajectory described. If the coupling
=15.3 V, 1Rc=0.35 K2 ™%, 0=0.001 are as in Fig. 1B). The  gyength is insufficient, this pattern is unobservdsiee Fig.
solid line in bold_shows the trajectory of oscnla_ltor_ 1. The mome_ntsl3(a), 1/R.=0.2 kQ~1]. With increasing coupling strength,
g;;\;\]/(e)dclti):esscutlve bursts of oscillator 1 are indicated by vertlcalits probability grows, and the peak corresponding to this pat-

' tern arises in the ISI distributiongFig. 13b), 1/Rc

consider their most likely trajectories in between the spikes=0.35 K2~ !, peak no. 1 As the coupling strength in-
produced by the first oscillator. For convenience, the mo<creases furthefsee Fig. 1&), 1/Rc=0.6 kQ ™!, the peak
ments of firing of the first oscillator are marked with vertical area enlargesand, hence, the probability of the event be-
dashed linegin bold) and its trajectory is shown with a thick comes higher In addition, the mean time required for the
solid line (Figs. 14 and 15 Each of the trajectories consid- oscillator to make a trip along the trajectory descriljleti us
ered below is designated with the same number as that useg¢note it T;) also increases with the coupling strength,
to mark the peak in the ISI distribution shown in Fig. 13 to which shifts the peak to longér values.
which the periods contained in that trajectory contribute. (2) Oscillators 1 and 2 jump from the slow left branch of

(1) Let us start with Fig. 1. In this noise sample, os- the N-shaped nullclingFig. 15a)]. This event causes oscil-
cillator 1 is the first to jump from the slow left branch of the lator 3 to perform a trip along a small loop near the nullicline
N-shaped nulicline. After its jump, coupling causes the othemaximum. On completing the cycle, the oscillators are close
oscillators to stop advancing to the point of transition and tdo one another, but oscillators 1 and 2 are somewhat farther
perform a trip along a small loop near the nullcline maxi- from the maximum than oscillator 3. Nevertheless, this par-
mum. This loop in the phase portrait corresponds to the deticular sample of noise is such that oscillator 1 surpasses
flection in the wave form. Completing the cycle, the first oscillator 3 and is the first to jump. Along the trajectory
oscillator begins to approach its partners. At this stage of theonsidered, the equation fdds(t) includes the coupling
cycle, coupling reduces the phase shifts between the oscillderm (U;—2U3z+U,)/Rc~2(U;—Uj3)/Rc, becauseU,
tors. In the presence of this particular sample of noise, the=U;. In the previous case, this term wagU;—U3)/R¢,
first oscillator is again the first to jump despite the delay inbecausdJ;~U,.
its movement. For this event to occur, the lag between the Hence, it is certain that, when the oscillators approach the
first and the other two oscillators when they come close t@oint of transition, the gap between the leading oscillator 3
the point of transition has to be less than the boosting effecand the lagging oscillators 1 and 2 is shorter on this trajec-
of noise on the first oscillator; therefore, the higher the noisdory than the gap between the leading oscillator 1 and the
amplitude and the greater the coupling strength, the highdrgging oscillators 2 and 3 on the previous trajectory de-
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scribed in paragraph 1. Therefore, significantly lower cou-n the reverse order. It means thag~T,+T,, Tg~Ts.
pling strengths are sufficient to observe this trajectory. ComThese periods contribute to the same peak of the ISI distri-
pared withT,, T,, which is the mean time required for the butions.
oscillator to perform the described trip, depends on the cou- (7) Yet another trajectory that contains only one loop-
pling strength to a lesser extent. This is understandable, be&ssociated delay of oscillator 1 is presented in Figcil4
cause the coupling term for oscillator(&hich we monitoy ~ With this noise sample, a series of two jumps is observed.
is either~(U3;—U;)/Rc when it follows theT, trajectory, Each time, two oscillators jump together, first oscillators 1
whereU;~U,; or ~2(U3—U;)/Rc when it follows theT;  and 2 and then oscillators 2 and 3. The mean pefied
trajectory, wherdJ,~U5. As seen in Fig. 13, no noticeable ~T,+T,, as clearly seen in Fig.18.
shift in the peak 2 position could be obtained by varying the (8) The peaks in Fig. 13 are relatively regularly spaced,
coupling strength. suggesting that the solutions giving rise to this spectrum are
(3) In Fig. 14(b), all three oscillators simultaneously jump such that, until firing, an oscillator performs several trips
from the slow left branch of the nulicline and move togetheralong the small loop. In fact, the reasoning presented above
up to the next transition point, where oscillator 1 jumps[(4)—(7)] can easily be extended to general cases with any
again. Being unaffected by coupling, the mean time it takemumber of trips. We confine ourselves to considering the
an oscillator to run this trajectorylg) is equal to the period simplest trajectory, which is presented in Fig.(d4 Obvi-
of the in-phase limit cycle in the noise-free system. Howeverpusly, the mean period equal§ 3 because the trajectory
the probability of such an event depends on the phase shiftonsists of three components, each of which can be treated
between the oscillators near the transition points. The highdike the trajectory described in paragraphékter changing
the coupling strength, the smaller the phase shifts, and thescillator numbering
more probable the noise-induced in-phase trip. As expected, Thus, a detailed analysis of the dynamics can explain why
the peak 3 amplitude, which is the lowest in Fig(d3in-  the ISls are so variable if three identical relaxation oscillators
creases in 1®), and further increases in (3. are coupled vial exchange. The results presented, while
(4) In the sections below, we explain why the period of being relevant to stiff systems, do not change qualitatively
oscillator 1 may become longer and longer. First, let it jumpwith the stiffness. Variation in the voltage supgly, or in
from the left slow part of the nullclingFig. 15c)], causing the coupling strength also changes them only quantitatively.
its partners to move together along the small-loop-containin@here existR: and Uy, intervals where the discretization
trajectory. Initially, the oscillators move along this trajectory effect is most pronounced, e.g., near the homogeneous SSs.
as in the case shown in Fig. 1, but, when they approach then other areas of the phase diagrartd(e (16—17) V),
next transition point, a random gate opens only for oscillatorwhere two or three basic limit cycles coexist, the ISI distri-
2. It jumps, forcibly retarding oscillators 1 and 3 by the time butions usually contain two or three pealsee[22]). How-
required for running the loop. Near the next transition point,ever, this polymodality is less striking than that induced by
oscillator 1 gets a chance to be the first to fire. As seen imoise in the ring of identical oscillators moving along the
Fig. 15b), the trajectory considered consists of two parts.unique in-phase attractgFigs. 13b) and 13c)].
The second part is essentially the same as the first one, only The position of peak 8n phasegin the ISI distributions is
with oscillator 1 in place of oscillator 2. Therefore, the time independent of the coupling strength, unlike other peak po-
required for oscillator 1 to complete the trajectory averagesitions, which vary differently with its increase. Peak split-
T,~T,+T; [compare the positions of peaks 4 and 1 in Figs.ting is clearly seen in Fig. 1B); however, this event is not
13(b) and 13c)]. The higher the probability that oscillator 1 frequent. As IR is about 0.35 R 1, peak 1 is close to
will jump when approaching the point of transition, the peak 2[Fig. 13b)], giving rise to relatively broad unresolved
higher the probability of observing trajectory 1 and, corre-peaks in this figure, in which the interpeak spacings are the
spondingly, the lower the probability of finding trajectory 4 largest. This means that the ISI distributions should be inves-
among noise-induced time series. tigated in a broad range of coupling strengths to be sure that
(5) Oscillators 1 and 2 jump from the slow part of the the essential dynamic processes will not be masked by over-
nullcline, and coupling causes oscillator 3 to make a triplapping and will manifest themselves in the ISI distributions.
along the small loopFig. 15c)]. Until the next maximum, A parallel may be drawn between abnormal ISI variability
trajectory 5 is as in case 2. However, the noise sample in thiand the sets of attractors described in Secs. IlIl and IV. For-
case is such that it is oscillator 3, rather than oscillator 1, thatnally, the definition of deterministic attractors is valid only
is the first to jump. After its jump, coupling sends oscillatorsin the absence of noise. However, for relaxation oscillations
1 and 2 along the small loop in the phase plane. Meanwhilein the chosen area of the parameter plane, the effect of noise
oscillator 3 moves along the main path and again approachés restricted to quite a small part of the trajectory in the
the point of transition, lagging somewhat behind oscillators lvicinity of the maximum of the N-shaped nulicline. Noise
and 2. Oscillator 1 jumps earlier than oscillator 3. Like thecauses only short-term variations in the parameters. There-
trajectory corresponding to peak 4, this trajectory consists ofore, the basic ISI peaks can be brought into qualitative cor-
two parts:Ts~T,+ T,. As in case 4, the higher the probabil- respondence with the attractors detected in the system of
ity of observing trajectory 2, the lower the probability of weakly detuned oscillatorisee Sec. 1Y and specifically re-
finding trajectory 5 in the noise-induced time series. lated to detuning. For example, peaks 1, 2, and 3 correspond
(6) The trajectory presented in Fig. @B is in essence to the 0,0,1 DT, 0,1,1 in-phase, and in-phase solutions, re-
trajectory 5, in which the internal components are arrangedpectively.
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0.03

I the detuned oscillator is more likely to have long ISIs, as
A ] compared with its partners, but qualitative differences be-
tween the distributions in Figs. 16 and(bBare difficult to
find; namely, the ISI distribution shape, the degree of intra-
T peak splitting, and the mean interpeak spacing remain almost
. unchanged.

_ Hence, with reasonable values of noise amplitudes and
L detuning, the latter produces no qualitative changes in the
dynamic behavior of the oscillator ring.
In the middle of the phase diagrafnear the boundaries
of the inhomogeneous SS#0 noise-induced polymodality
B of the ISI distributions can be observed even in the presence
of detuning, which gives rise to additional attractors. All the
basic solutions in this region remain stable against low-
amplitude noise. An increase in the noise amplitude breaks
T down these solutions, and the system settles onto the in-
T phase attractor, which has the largest basin in this area of the
e : parameter plane.
0 2 4 6 8 10 The sensitivity of the present solutions to noise varies in a
T (sec) broad range, but formally, like the basic ones, they are all
FIG. 16. (a) ISl distribution for the detuned oscillatorN( Stab_'e against n0|sg. The results of ngmerlcal experlmgnts
=12 281); andb) ISI distribution for the other two oscillatord\( Qe3|gned t_o determlne th,e effect of noise ‘?” th(_e mean,l'fe'
=33078). Parameters: Uy=15.3 V, 1Rc=0.35 K2 1, o time of various solu_tlons in a system of nonl_dentlcal os_C|IIa—
=0.001,Ry =3.92 K2, andR,. =Ry =3.9 k. tors are presented in Table I. The 0,1,1 antiphase DT is ob-
! 2o servable if the noise amplitude is lower than 0.008. The

As mentioned abovéSec. I\), the basic in-phase solu- RW is absolutely insensitive to the noise in this amplitude
tion, which is unique in certain regions near the homoge!@nge, whereas the 2,1,1 limit cycle persistsrifis lower

neous SS, becomes unstable in the presence of small detdf}@n 0-0008 and is immediately and completely broken down
ing. In these parameter regions, in-phase oscillations oft l2rger noise amplitudes. . _

identical units are easily disrupted in the presence of noise 1nerefore, with properly chosen initial points, the
[see, e.g., Fig. #)]. Both phenomena have the same na-detuning-related nontrivial solutions in the vicinity of the

ture: the slow variable exchange between stiff oscillators. INhomogeneous SSs are quite observable in the presence of
The permanent presence of small detuning should chand&®

0.02

Z|-=
=

0.01

0.03

0.02

Z|-~
= |

0.01

ntrolled noise. However, they do not manifest themselves

the noise-induced ISI distributions. The retardation of one>POntaneously in the ISI spectra, as they do in the vicinity of
oscillator often gives rise to multiloop long-period trajecto- the homogeneous SS, because of the dominance of the in-

ries. This effect for a ring with one retarded oscillator is Phase solution.
illustrated in Fig. 16. To compare the ISI distributions, we set

1/Rc=0.35 K21, as in Fig. 180) for identical oscillators.

The distributions are pictured separately for the first oscilla- Comprehensive studies of systems of several more or less
tor [Fig. 16a)] and the two otherfFig. 16b)]. As expected, identical oscillators have revealed the mechanisms whereby

VIl. DISCUSSION

TABLE I. Mean lifetimes(s) of the solutions near the boundary of the inhomogeneous SSs in a system of
nonidentical oscillators for various noise amplitudeg.(The parameters used in the computations are the
same as those in Fig. Iphase diagraim Number of random trials used to obtain the mean is given in
parentheses. If no decay of the solution was detected overXifsg its lifetime is written as “X.”

Solution,
values of
parameters o=0.01 o=0.008 o=0.005 o=0.003 o=0.001 o=0.0008
0,1,1 antiphase, 6.0 9.4 >185 >187 >189
Uy=195 V (216) (294)
1/Rc=0.35 K21
2,1,1 antiphase, 15 1.7 2.0 3.0 27.0 >153
Uy,=21.0 V (229 (258 (255 (250 (36)
1/R:=0.31 K21
RW1, >336 >335
Uy=20.5 V

1/R:c=0.25 k) ?
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rhythms are generated[3,8,16,9,18,21,2]J. As shown re- veals that long ISIs often result from randomly created more
cently, multiple phase-locked states are typical of delayor less long elements of the DT. As the segments of the
coupled limit-cycle oscillator$30]. Among them, the most trajectory where relaxation oscillators are sensitive to noise
expected are antiphase oscillations and rotating waves. Hre quite smallonly in the close vicinity of the nulicline
several attractors coexist in the same region of the paramet€Xtrema, noise can be interpreted as a source of short-lived
space, noise can induce infinite transitions between the aflétuning, which delays one or two of the moving oscillators.
tractors. Therefore, in the presence of noise, the ISI distribumportantly, in the area near the Hopf bifurcatiot\(
tions are expected to contain not only peaks corresponding {192 V in our systemwhere the in-phase limit cycle is
the oscillation periods of the attractors, but also peaks corrdomally stable, its attraction is weak, and it is a poor com-
sponding to the characteristic times of transitions betweefR€UtOr against other randomly generated trajectories.

the attractors. However, in the largest part of the areas where The situation s different near the mh_omogeneous Hopf
the basic attractors coexist, the maximum IS distribution?!furcation Uy=18 V-22 V). In this region of the param-

widths are determined by the attractor period ratio and ar§'er space, small detuning also gives rise to different re-

relatively small gimes, but it almost does not affect the basin of attraction of

In our opinion, slow variable exchange between relax-the in-phase regime. Therefore, it depends on the way in

ation oscillators is a powerful mechanism for generatingwgt"(:zetgeszs'[;m is detuned whether the DT is observable or

rhythms. For convenience, two-dimensional oscillators are' Th b v broad IS! distributi .
usually studied, although they not always adequately corre-, ufs, abnormally ;oah . d|str! ultlons da“? quite pos-
spond to real processes. In such systems, additional stabaébe or a system of three identical and simplevo-

limit cycles occupy large regions in the parameter space an imensional I|m|t pycl_es coupled via S!OW variable ex
have large basins of attraction. In addition, stiff systems aré:hange. Such distributions are observed in large but specially

easy to govern by externally varying the parameters or phas%e_lected rggions of t_he parameter space. It is evident from the
variables, because it is typical of such systems that therg“'g[)osdwp'c gnal)k;sw(Seg. VD_thatf the;] phenor_r|1|enon de-
quickly settle on the attractors and rapidly switch betwee cribed may be observed not just for three oscillators.

them. With an increase in the number of oscillators, the The ISI distribution pfes_e”te.d’ for e>.<amp_le, n E|g(ld)3
phase space volume rises less rapidly than the number &t?sely resembles the distribution obtained in studies of sto-
stable attractors. As a result, the so-called crowding of attrachastic reson_e}n_o(éSR) (see, for exampl_e{,32_]). With classic

tors is observedi31]. In its turn, crowding enhances the ef- >R the sensitivity of the system to noise is modulated by an
fect of noise on the dynamics of the system external periodic signal. Our model is distinct in that the

In a previous stud§26], periodic regimes were examined sensitivity to noise is modulated by slow variable exchange,

in the presence of small stationary detuning, which proved t@nd the mean ISI is determined by the relaxation time of the

be an important bifurcation parameter. In this study, we fo-SIOW variable. As no external periodic signal acts on our

cused on the analysis of complex patterns of ISI distribution$YSt€m. We ;%nnot speak dabout 8,54 but V‘;]e can expect “au-
generated by uncorrelated noise in various regions of thEPnomous” SR (or, according to[34], “coherence reso-
parameter space in the presence or in the absence of sm?ﬁmce) to manifest itself33], because a change in the noise
detuning. In addition to the basic periodic attract@mse Sec. _eveI modulates the degree of ISI coherence. Work on this is
IV), coupling via slow variable exchange gives rise to a vall ;Ijrogresls. L b id th . fab |
riety of unexpected attractors. If the relaxation parameter i? n conclusion, it may be said that generation of abnorma
in a reasonable range:{-0.1), slow variable exchange af- luctuations in systems of coupled oscillators is not restricted

fords stability to DTs in a broad range of coupling strengths,t0 systems with local diffusion. Very recently, a study of

but only near the boundary of creation of limit cycles of globally qo.upled systems appeared _that describes large de-
isolated oscillators[28]. As the relaxation parameter in- synchronizing effects of low-level noig&5].

creases, the range of DT stability shrinks. However, DTs are
readily generated in the presence of even small detuisieg
Sec. IV Q. Comprehensive analysis of the wave forms of This work was supported by the Russian Foundation of
one oscillator in a ring of identical oscillatofSec. V) re- Basic Research.
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